20 research outputs found

    Dopamine Transporter Genetic Variants and Pesticides in Parkinson’s Disease

    Get PDF
    BackgroundResearch suggests that independent and joint effects of genetic variability in the dopamine transporter (DAT) locus and pesticides may influence Parkinson's disease (PD) risk.MaterialsMethodsIn 324 incident PD patients and 334 population controls from our rural California case-control study, we genotyped rs2652510, rs2550956 (for the DAT 5' clades), and the 3' variable number of tandem repeats (VNTR). Using geographic information system methods, we determined residential exposure to agricultural maneb and paraquat applications. We also collected occupational pesticide use data. Employing logistic regression, we calculated odds ratios (ORs) for clade diplotypes, VNTR genotype, and number of susceptibility (A clade and 9-repeat) alleles and assessed susceptibility allele-pesticide interactions.ResultsPD risk was increased separately in DAT A clade diplotype carriers [AA vs. BB: OR = 1.66; 95% confidence interval (CI), 1.08-2.57] and 3' VNTR 9/9 carriers (9/9 vs. 10/10: OR = 1.8; 95% CI, 0.96-3.57), and our data suggest a gene dosing effect. Importantly, high exposure to paraquat and maneb in carriers of one susceptibility allele increased PD risk 3-fold (OR = 2.99; 95% CI, 0.88-10.2), and in carriers of two or more alleles more than 4-fold (OR = 4.53; 95% CI, 1.70-12.1). We obtained similar results for occupational pesticide measures.DiscussionUsing two independent pesticide measures, we a) replicated previously reported gene-environment interactions between DAT genetic variants and occupational pesticide exposure in men and b) overcame previous limitations of nonspecific pesticide measures and potential recall bias by employing state records and computer models to estimate residential pesticide exposure.ConclusionOur results suggest that DAT genetic variability and pesticide exposure interact to increase PD risk

    Myocarditis in CD8-Depleted SIV-Infected Rhesus Macaques after Short-Term Dual Therapy with Nucleoside and Nucleotide Reverse Transcriptase Inhibitors

    Get PDF
    Background: Although highly active antiretroviral therapy (HAART) has dramatically reduced the morbidity and mortality associated with HIV infection, a number of antiretroviral toxicities have been described, including myocardial toxicity resulting from the use of nucleotide and nucleoside reverse transcriptase inhibitors (NRTIs). Current treatment guidelines recommend the use of HAART regimens containing two NRTIs for initial therapy of HIV-1 positive individuals; however, potential cardiotoxicity resulting from treatment with multiple NRTIs has not been addressed. Methodology/Principal Findings: We examined myocardial tissue from twelve CD8 lymphocyte-depleted adult rhesus macaques, including eight animals infected with simian immunodeficiency virus, four of which received combined antiretroviral therapy (CART) consisting of two NRTIs [(9-R-2-Phosphonomethoxypropyl Adenine) (PMPA) and (+/−)-beta-2′,3′-dideoxy-5-fluoro-3′-thiacytidine (RCV)] for 28 days. Multifocal infiltrates of mononuclear inflammatory cells were present in the myocardium of all macaques that received CART, but not untreated SIV-positive animals or SIV-negative controls. Macrophages were the predominant inflammatory cells within lesions, as shown by immunoreactivity for the macrophage markers Iba1 and CD68. Heart specimens from monkeys that received CART had significantly lower virus burdens than untreated animals (p<0.05), but significantly greater quantities of TNF-α mRNA than either SIV-positive untreated animals or uninfected controls (p<0.05). Interferon-γ (IFN-γ), IL-1β and CXCL11 mRNA were upregulated in heart tissue from SIV-positive monkeys, independent of antiretroviral treatment, but CXCL9 mRNA was only upregulated in heart tissue from macaques that received CART. Conclusions/Significance: These results suggest that short-term treatment with multiple NRTIs may be associated with myocarditis, and demonstrate that the CD8-depleted SIV-positive rhesus monkey is a useful model for studying the cardiotoxic effects of combined antiretroviral therapy in the setting of immunodeficiency virus infection

    Transthoracic approaches to thoracic disc herniations

    No full text
    corecore