15 research outputs found

    Performance of textured carbon on copper electrode multistage depressed collectors with medium-power traveling wave tubes

    Get PDF
    Performance of multistage depressed collectors (MDCs) using textured carbon on copper substrate electrode surfaces was evaluated in conjunction with medium-power traveling wave tubes (TWTs). The MDC and TWT overall efficiencies for these electrodes were measured and compared with those obtained with the same TWT and a copper electrode MDC of identical design. Long-term stability of the carbon-coated copper electrode surfaces was investigated by periodic evaluation of TWT-MDC performance over an extended period of continuous wave (CW) operation. Application of textured carbon coating on copper MDC electrode surfaces produced a 13% improvement in both MDC and TWT overall efficiencies for the TWT-MDC tests. During 1600 hr of CW operation with a medium power TWT, no significant changes in MDC performance were noted. This indicated good stability of the textured carbon electrode surfaces. This stability was confirmed by scanning electron microscope examinations of the electrode surfaces before assembly of the MDC and after completion of the test program

    Secondary electron emission characteristics of molybdenum-masked, ion-textured OFHC copper

    Get PDF
    A method for producing a uniform, highly textured surface on oxygen-free, high conductivity (OFHC) copper by ion bombardment using sputtered molybdenum as a texture-inducing masking film was developed and used to provide samples for study. The purpose was to develop a basically OFHC copper surface having very low secondary electron emission characteristics. Surfaces having low secondary electron emission are a requirement for the electrodes of very high efficiency multistage depressed collectors (MDC's). Such MDC's are used in microwave amplifier traveling wave tubes for space communications and other applications. OFHC copper is the material most commonly used for MDC electrodes because it has high thermal conductivity, it is easy to machine, and its fabrication and brazing procedures are well established. However, its untreated surface displays relatively very high levels of secondary electron emissions. Textured OFHC copper samples were tested for true secondary electron emission and relative reflected primary electron yield at primary electron beam energy levels from 200 to 2000 eV and at direct (0 deg) to oblique (60 deg) beam impingement angles. The test results for three of the samples, each of which was processed in a slightly different way, are compared with each other and with test results for a machined OFHC copper sample. Although the textured samples are not represented here as having been processed optimally, their measured secondary electron emission characteristics are significantly lower than those of the untreated OFHC copper sample over the range of conditions studied. Importantly, the relative reflected primary electron yield of one of the textured samples is conspicuously lower than that of the others. Clearly, with further development, the molybdenum-masked ion-textured OFHC copper surface will be a promising material for high-efficiency MDC electrodes

    A Balanced-pressure Sliding Seal for Transfer of Pressurized Air Between Stationary and Rotating Parts

    Get PDF
    A combination sliding-ring and pressure-balancing seal capable of transferring pressurize air from stationary to rotating parts was developed and experimentally investigated at sliding velocities and cooling-air pressures up to 10,000 feet per minute and 38.3 pounds per square inch absolute, respectively. Leakage of cooling air was completely eliminated with an expenditure of balance air less than one-fourth the leakage loss of air from labyrinth seals under the same conditions. Additional cooling of the carbon-base seal rings was required, and the maximum wear rate on the rings was about 0.0005 inch per hour

    Method and apparatus for producing a substrate with low secondary electron emissions

    Get PDF
    The present invention is directed to a method and apparatus for producing a highly-textured surface on a copper substrate with only extremely small amounts of texture-inducing seeding or masking material. The texture-inducing seeding material is delivered to the copper substrate electrically switching the seeding material in and out of a circuit loop
    corecore