52 research outputs found
Proprioception deficiency in articular cartilage lesions of the knee
Purpose: The purpose of this study is to investigate the proprioceptive function of patients with isolated articular cartilage lesions of the knee as compared to normal controls. Methods: The Cartilage group consisted of eight subjects with radiologically and arthroscopically confirmed, isolated, unilateral, articular cartilage lesions of the knee (Outerbridge grade III or IV). They were compared to 50 normal controls. Knee proprioception was assessed by dynamic postural stabilometry using the Biodex Balance SD System. Patient-reported outcome measures (PROMs) were used to evaluate all subjects. Results: Proprioception of the injured knee of the Cartilage group was significantly poorer compared to that of the control group (p < 0.001). A significant proprioceptive deficit also was observed when the uninjured knees of the Cartilage group were compared to those in the Control group (p = 0.003). There was no significant proprioceptive difference between the injured and the contra-lateral uninjured knee of the Cartilage group (p = 0.116). A significant correlation was found between the proprioception measurements of the injured and uninjured knee of the Cartilage group (r = 0.76, p = 0.030). A significant difference was observed in all PROMs (p < 0.001) between the Cartilage and Control groups. Conclusions: Patients with isolated articular cartilage lesions of the knee had a significant proprioceptive deficit as compared to normal controls. The deficiency was profound and even affected the proprioceptive function of the contra-lateral uninjured knee. This study has shown that articular cartilage lesions have a major influence on knee proprioception. However, it remains uncertain as to whether a proprioceptive deficit leads to osteoarthritis or is a consequence of it
Structural characterization of major soyasaponins in traditional cultivars of Fagioli di Sarconi beans investigated by high-resolution tandem mass spectrometry
Major soyasaponins, i.e., soyasaponins I, V, βg, and αg from traditional Fagioli di Sarconi beans (Phaseolus vulgaris L., ecotype Tabacchino), were analyzed by reversed-phase liquid chromatography–mass spectrometry (MS) using high-resolution Fourier transform ion cyclotron resonance (FTICR) MS on electrospray ionization in positive-ion mode. Fagioli di Sarconi beans are protected by the European Union [Commission Regulation (EC) No 1263/96] with the mark PGI (for “Protected Geographical Indication”), and are cultivated in Basilicata (southern Italy). Protonated adducts of soyasaponins I, V, βg, and αg were observed at m/z 943.5262, 959.5213, 1069.5583, and 1085.5534, respectively. Gas-phase dissociation of soyasaponins by infrared multiphoton dissociation FTICR MS was performed using a CO2 laser source at a wavelength of 10.6 μm. Most of the fragment ions were identified unambiguously by using the high-resolution and accurate mass value provided by the FTICR mass spectrometer. All soyasaponins exhibit a sequential and neutral loss of sugar moieties at relatively short irradiation times (i.e., less than 50 ms). When the pulse length was increased, a more pronounced fragmentation occurred, with several signals in the lower part of the mass spectrum. In the case of soyasaponins βg and αg, the occurrence of the conjugated product ion at m/z 127.0389 ([C6H6O3 + H]+, 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) was evidenced. Coupling reversed-phase liquid chromatography with high-performance FTICR MS in combination with infrared multiphoton dissociation tandem MS proved to be very promising for the structural characterization of soyasaponins, and is also suitable for the rapid and accurate structural investigation of other saponins
- …