54 research outputs found

    A Theoretical Perspective on the Photochemistry of Boron-Nitrogen Lewis Adducts

    Full text link
    Boron-Nitrogen (B-N) Lewis adducts form a versatile family of compounds with numerous applications in functional molecules. Despite the growing interest in this family of compounds for optoelectronic applications, little is currently known about their photophysics and photochemistry. Even the electronic absorption spectrum of ammonia borane, the textbook example of a B-N Lewis adduct, is unavailable. Given the versatility of the light-induced processes exhibited by these molecules, we propose in this work a detailed theoretical study of the photochemistry and photophysics of simple B-N Lewis adducts. We used advanced techniques in computational photochemistry to identify and characterize the possible photochemical pathways followed by ammonia borane, and extended this knowledge to the substituted B-N Lewis adducts pyridine-borane and pyridine-boric acid. The photochemistry observed for this series of molecules allows us to extract qualitative rules to rationalize the light-induced behavior of more complex B-N containing molecules

    A Theoretical Perspective on the Actinic Photochemistry of 2-Hydroperoxypropanal

    Get PDF
    [Image: see text] The photochemical reactions triggered by the sunlight absorption of transient volatile organic compounds in the troposphere are notoriously difficult to characterize experimentally due to the unstable and short-lived nature of these organic molecules. Some members of this family of compounds are likely to exhibit a rich photochemistry given the diversity of functional groups they can bear. Even more interesting is the photochemical fate of volatile organic compounds bearing more than one functional group that can absorb light—this is the case, for example, of α-hydroperoxycarbonyls, which are formed during the oxidation of isoprene. Experimental observables characterizing the photochemistry of these molecules like photoabsorption cross-sections or photolysis quantum yields are currently missing, and we propose here to leverage a recently developed computational protocol to predict in silico the photochemical fate of 2-hydroperoxypropanal (2-HPP) in the actinic region. We combine different levels of electronic structure methods—SCS-ADC(2) and XMS-CASPT2—with the nuclear ensemble approach and trajectory surface hopping to understand the mechanistic details of the possible nonradiative processes of 2-HPP. In particular, we predict the photoabsorption cross-section and the wavelength-dependent quantum yields for the observed photolytic pathways and combine them to determine in silico photolysis rate constants. The limitations of our protocol and possible future improvements are discussed

    Deciphering the Influence of Ground-State Distributions on the Calculation of Photolysis Observables

    Full text link
    Nonadiabatic molecular dynamics offers a powerful tool for studying the photochemistry of molecular systems. Key to any nonadiabatic molecular dynamics simulation is the definition of its initial conditions, ideally representing the initial molecular quantum state of the system of interest. In this work, we provide a detailed analysis of how initial conditions may influence the calculation of experimental observables by focusing on the photochemistry of methylhydroperoxide, the simplest and most abundant organic peroxide in our atmosphere. We investigate the outcome of trajectory surface hopping simulations for distinct sets of initial conditions sampled from different approximate quantum distributions, namely harmonic Wigner functions and ab initio molecular dynamics using a quantum thermostat. Calculating photoabsorption cross-sections, quantum yields, and translational kinetic energy maps from the results of these simulations reveals the significant effect of the initial conditions, in particular when low-frequency (~ a few hundred cm-1) normal modes are connected to the photophysics of the molecule. Overall, our results indicate that sampling initial conditions from ab initio molecular dynamics using a quantum thermostat is preferable for flexible molecules with photoactive low-frequency modes. From a photochemical perspective, our nonadiabatic dynamics simulations offer an explanation for a low-energy tail observed at high excitation energy in the translational kinetic energy map of methylhydroperoxide

    On the Topological Phase around Conical Intersections with Tamm–Dancoff Linear-Response Time-Dependent Density Functional Theory

    Get PDF
    Regions of nuclear-configuration space away from the Franck–Condon geometry can prove problematic for some electronic structure methods, given the propensity of such regions to possess conical intersections, i.e., (highly connected) points of degeneracy between potential energy surfaces. With the likelihood (perhaps even inevitability) for nonadiabatic dynamics simulations to explore molecular geometries in close proximity to conical intersections, it is vital that the performance of electronic structure methods is routinely examined in this context. In a recent paper [Taylor, J. T. J. Chem. Phys. 2023, 159, 214115.], the ability of linear-response time-dependent density functional theory within the adiabatic approximation (AA LR-TDDFT) to provide a proper description of conical intersections, in terms of their topology and topography, was investigated, with particular attention paid to conical intersections between two excited electronic states. For the same prototypical molecules, protonated formaldimine and pyrazine, we herein consider whether AA LR-TDDFT can correctly reproduce the topological phase accumulated by the adiabatic electronic wave function upon traversing a closed path around an excited-to-excited state conical intersection despite not using the appropriate quadratic-response nonadiabatic coupling vectors. Equally, we probe the ability of the ground-to-excited state intersection ring exhibited by AA LR-TDDFT in protonated formaldimine to give rise to a similar topological phase in spite of its incorrect dimensionality

    On the description of conical intersections between excited electronic states with LR-TDDFT and ADC(2).

    Get PDF
    Conical intersections constitute the conceptual bedrock of our working understanding of ultrafast, nonadiabatic processes within photochemistry (and photophysics). Accurate calculation of potential energy surfaces within the vicinity of conical intersections, however, still poses a serious challenge to many popular electronic structure methods. Multiple works have reported on the deficiency of methods like linear-response time-dependent density functional theory within the adiabatic approximation (AA LR-TDDFT) or algebraic diagrammatic construction to second-order [ADC(2)]-approaches often used in excited-state molecular dynamics simulations-to describe conical intersections between the ground and excited electronic states. In the present study, we focus our attention on conical intersections between excited electronic states and probe the ability of AA LR-TDDFT and ADC(2) to describe their topology and topography, using protonated formaldimine and pyrazine as two exemplar molecules. We also take the opportunity to revisit the performance of these methods in describing conical intersections involving the ground electronic state in protonated formaldimine-highlighting in particular how the intersection ring exhibited by AA LR-TDDFT can be perceived either as a (near-to-linear) seam of intersection or two interpenetrating cones, depending on the magnitude of molecular distortions within the branching space. [Abstract copyright: © 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
    • …
    corecore