4 research outputs found

    Is it really advantageous to operate proximal femoral fractures within 48 h from diagnosis? – A multicentric retrospective study exploiting COVID pandemic-related delays in time to surgery

    Get PDF
    Objectives: Hip fractures in the elderly are common injuries that need timely surgical management. Since the beginning of the pandemic, patients with a proximal femoral fracture (PFF) experienced a delay in time to surgery. The primary aim of this study was to evaluate a possible variation in mortality in patients with PFF when comparing COVID-19 negative versus positive. Methods: This is a multicentric and retrospective study including 3232 patients with PFF who underwent surgical management. The variables taken into account were age, gender, the time elapsed between arrival at the emergency room and intervention, pre-operative American Society of Anesthesiology score, pre-operative cardiovascular and respiratory disease, and 10-day/1-month/6-month mortality. For 2020, we had an additional column, “COVID-19 swab positivity.” Results: COVID-19 infection represents an independent mortality risk factor in patients with PFFs. Despite the delay in time-to-surgery occurring in 2020, no statistically significant variation in terms of mortality was detected. Within our sample, a statistically significant difference was not detected in terms of mortality at 6 months, in patients operated within and beyond 48 h, as well as no difference between those operated within or after 12/24/72 h. The mortality rate among subjects with PFF who tested positive for COVID-19 was statistically significantly higher than in patients with PFF who tested. COVID-19 positivity resulted in an independent factor for mortality after PFF. Conclusion: Despite the most recent literature recommending operating PFF patients as soon as possible, no significant difference in mortality was found among patients operated before or after 48 h from diagnosis

    Genetic up-regulation or pharmacological activation of the Na+/Ca2+ exchanger 1 (NCX1) enhances hippocampal-dependent contextual and spatial learning and memory

    No full text
    The Na+/Ca2+ exchanger 1 (NCX1) participates in the maintenance of neuronal Na+ and Ca2+ homeostasis, and it is highly expressed at synapse level of some brain areas involved in learning and memory processes, including the hippocampus, cortex, and amygdala. Furthermore, NCX1 increases Akt1 phosphorylation and enhances glutamate-mediated Ca2+ influx during depolarization in hippocampal and cortical neurons, two processes involved in learning and memory mechanisms. We investigated whether the modulation of NCX1 expression/activity might influence learning and memory processes. To this aim, we used a knock-in mouse overexpressing NCX1 in hippocampal, cortical, and amygdala neurons (ncx1.4over) and a newly synthesized selective NCX1 stimulating compound, named CN-PYB2. Both ncx1.4over and CN-PYB2-treated mice showed an amelioration in spatial learning performance in Barnes maze task, and in context-dependent memory consolidation after trace fear conditioning. On the other hand, these mice showed no improvement in novel object recognition task which is mainly dependent on non-spatial memory and displayed an increase in the active phosphorylated CaMKIIα levels in the hippocampus. Interestingly, both of these mice showed an increased level of context-dependent anxiety.Altogether, these results demonstrate that neuronal NCX1 participates in spatial-dependent hippocampal learning and memory processes
    corecore