2 research outputs found

    Genes Involved in Feed Efficiency Identified in a Meta-Analysis of Rumen Tissue from Two Populations of Beef Steers

    Get PDF
    In cattle, the rumen is an important site for the absorption of feed by-products released by bacterial fermentation, and variation in ruminal function plays a role in cattle feed efficiency. Studies evaluating gene expression in the rumen tissue have been performed prior to this. However, validating the expression of genes identified in additional cattle populations has been challenging. The purpose of this study was to perform a meta-analysis of the ruminal transcriptome of two unrelated populations of animals to identify genes that are involved in feed efficiency across populations. RNAseq data from animals with high and low residual feed intake (RFI) from a United States population of cattle (eight high and eight low RFI) and a Canadian population of cattle (nine high and nine low RFI) were analyzed for differences in gene expression. A total of 83 differentially expressed genes were identified. Some of these genes have been previously identified in other feed efficiency studies. These genes included ATP6AP1, BAG6, RHOG, and YPEL3. Differentially expressed genes involved in the Notch signaling pathway and in protein turnover were also identified. This study, combining two unrelated populations of cattle in a meta-analysis, produced several candidate genes for feed efficiency that may be more robust indicators of feed efficiency than those identified from single populations of animals

    Transcriptome profiles of the skeletal muscle of mature cows during feed restriction and realimentation

    Get PDF
    Objective: Realimentation can compensate for weight loss from poor-quality feedstuffs or drought. Mature cows fluctuate in body weight throughout the year due to nutrient availability. The objective of this study was to determine whether cows that differ in weight gain during realimentation also differ in the abundance of transcripts for enzymes associated with energy utilization in skeletal muscle. Mature cows were subjected to feed restriction followed by ad libitum feed. Skeletal muscle transcriptome expression differences during the two feeding periods were determined from cows with greater (n = 6) and less (n = 6) weight gain during the ad libitum feeding period. Results: A total of 567 differentially expressed genes (408 up- and 159 down-regulated) were identified for the comparison of restriction and ad libitum periods (PBonferroni \u3c 0.05). These genes were over-represented in lysosome, aminoacyl-tRNA biosynthesis, and glutathione metabolism pathways. Validation of the expression of five of the genes was performed and four were confirmed. These data suggest that realimentation weight gain for all cows is partially controlled by protein turnover, but oxidative stress and cellular signaling pathways are also involved in the muscle tissue. This dataset provides insight into molecular mechanisms utilized by mature cows during realimentation after a period of low abundance feed
    corecore