729 research outputs found
Evaluation of a Phosphate Management Protocol to Achieve Optimum Serum Phosphate Levels in Hemodialysis Patients
Original article can be found at: http://www.sciencedirect.com/science/journal/10512276 Copyright National Kidney Foundation, Inc. DOI: 10.1053/j.jrn.2008.05.003To evaluate the effectiveness of a protocol designed to optimize serum phosphate levels in patients undergoing regular hemodialysis (HD).Peer reviewe
Mapping the most energetic cosmic rays
The correlation between the directions of optically-detected AGNs within 75
Mpc and the arrival directions of cosmic rays above 57 EeV detected by the
Auger collaboration up to August 2007 is examined using uniform-exposure plots
and a form of right ascension resonance which does not require choice of an
association window radius. Using the latter, the chance of accidental
correlation is found to be well below 1 in 10^5 even without using 3.2 degree
windows; the correlation with FRI-like radio galaxies within 75 Mpc, listed by
Nagar & Matulich (which are in AGN clusters), is separately just as
significant; and a correlation can also be found in other data at a lower
energy. Cen A is currently inactive at this energy, as more distant radio
galaxies are so prominent. The efficacy of a 57 EeV cut to select this
revelatory (proton) sample of the Auger data may be almost accidental and not
robust. The cosmic rays in the Auger sample seem to be scattered by ~3-4
degrees en route, from about 50 Mpc, and in one relatively well probed sky
region there may be a 4 degree systematic deflection in a Bz component of the
magnetic field in the galactic halo. The sources appear to be mostly within 120
Mpc. This is compatible with a GZK survival horizon, but only if (a) the Auger
energies are underestimated by ~25% and (b) the sudden fall in the energy
spectrum is not simply a GZK effect but essentially reflects an energy cut-off
in the sources.Comment: Submitted to Astroparticle Physics; 27 pages, 13 figures (20 panels
Single-electron transport driven by surface acoustic waves: moving quantum dots versus short barriers
We have investigated the response of the acoustoelectric current driven by a
surface-acoustic wave through a quantum point contact in the closed-channel
regime. Under proper conditions, the current develops plateaus at integer
multiples of ef when the frequency f of the surface-acoustic wave or the gate
voltage Vg of the point contact is varied. A pronounced 1.1 MHz beat period of
the current indicates that the interference of the surface-acoustic wave with
reflected waves matters. This is supported by the results obtained after a
second independent beam of surface-acoustic wave was added, traveling in
opposite direction. We have found that two sub-intervals can be distinguished
within the 1.1 MHz modulation period, where two different sets of plateaus
dominate the acoustoelectric-current versus gate-voltage characteristics. In
some cases, both types of quantized steps appeared simultaneously, though at
different current values, as if they were superposed on each other. Their
presence could result from two independent quantization mechanisms for the
acoustoelectric current. We point out that short potential barriers determining
the properties of our nominally long constrictions could lead to an additional
quantization mechanism, independent from those described in the standard model
of 'moving quantum dots'.Comment: 25 pages, 12 figures, to be published in a special issue of J. Low
Temp. Phys. in honour of Prof. F. Pobel
Quantized charge transport through a static quantum dot using a surface acoustic wave
We present a detailed study of the surface acoustic wave mediated quantized
transport of electrons through a split gate device containing an impurity
potential defined quantum dot within the split gate channel. A new regime of
quantized transport is observed at low RF powers where the surface acoustic
wave amplitude is comparable to the quantum dot charging energy. In this regime
resonant transport through the single-electron dot state occurs which we
interpret as turnstile-like operation in which the traveling wave amplitude
modulates the entrance and exit barriers of the quantum dot in a cyclic fashion
at GHz frequencies. For high RF powers, where the amplitude of the surface
acoustic wave is much larger than the quantum dot energies, the quantized
acoustoelectric current transport shows behavior consistent with previously
reported results. However, in this regime, the number of quantized current
plateaus observed and the plateau widths are determined by the properties of
the quantum dot, demonstrating that the microscopic detail of the potential
landscape in the split gate channel has a profound influence on the quantized
acoustoelectric current transport.Comment: 9 page
Profiles of emission lines generated by rings orbiting braneworld Kerr black holes
In the framework of the braneworld models, rotating black holes can be
described by the Kerr metric with a tidal charge representing the influence of
the non-local gravitational (tidal) effects of the bulk space Weyl tensor onto
the black hole spacetime. We study the influence of the tidal charge onto
profiled spectral lines generated by radiating tori orbiting in vicinity of a
rotating black hole. We show that with lowering the negative tidal charge of
the black hole, the profiled line becomes to be flatter and wider keeping their
standard character with flux stronger at the blue edge of the profiled line.
The extension of the line grows with radius falling and inclination angle
growing. With growing inclination angle a small hump appears in the profiled
lines due to the strong lensing effect of photons coming from regions behind
the black hole. For positive tidal charge () and high inclination angles
two small humps appear in the profiled lines close to the red and blue edge of
the lines due to the strong lensing effect. We can conclude that for all values
of , the strongest effect on the profiled lines shape (extension) is caused
by the changes of the inclination angle.Comment: Accepted by General Relativity and Gravitatio
Delivery of Automated External Defibrillators via Drones in Simulated Cardiac Arrest: Users' Experiences and the Human-Drone Interaction
Background: Survival after out-of-hospital cardiac arrest (OHCA) in the United States is approximately 10%. Automatic external defibrillators (AEDs) are effective when applied early, yet public access AEDs are used in <2% of OHCAs. AEDs are often challenging for bystanders to locate and are rarely available in homes, where 70% of OHCAs occur. Drones have the potential to deliver AEDs to bystanders efficiently; however, little is known about the human-drone interface in AED delivery. Objectives: To describe user experiences with AED-equipped drones in a feasibility study of simulated OHCA in a community setting. Methods: We simulated an OHCA in a series of trials with age-group/sex-matched participant pairs, with one participant randomized to search for a public access AED and the other to call a mock 9-1-1 telephone number that initiated the dispatch of an AED-equipped drone. We investigated user experience of 17 of the 35 drone recipient participants via semi-structured qualitative interviews and analyzed audio-recordings for key aspects of user experience. Results: Drone recipient participants reported largely positive experiences, highlighting that this delivery method enabled them to stay with the victim and continue cardiopulmonary resuscitation. Concerns were few but included drone arrival timing and direction as well as bystander safety. Participants provided suggestions for improvements in the AED-equipped drone design and delivery procedures. Conclusion: Participants reported positive experiences interacting with an AED-equipped drone for a simulated OHCA in a community setting. Early findings suggest a role for drone-delivered AEDs to improve bystander AED use and improve outcomes for OHCA victims
Drone Delivery of an Automated External Defibrillator
To the Editor: Every year, an estimated 350,000 persons in the United States have an out-ofhospital cardiac arrest; only approximately 10% survive.1 The probability of survival doubles when a bystander administers cardiopulmonary resuscitation (CPR) and uses an automated external defibrillator (AED) before emergency medical services (EMS) arrive, but bystander AED use occurs in less than 2% of cardiac arrests in the United States.2 Survival is most likely when CPR and defibrillation are delivered within 5 minutes after the start of a cardiac arrest3; however, the median arrival time of EMS in the United States is 8 minutes and in remote areas can extend to 30 minutes
Out-of-Hospital Cardiac Arrest Bystander Defibrillator Search Time and Experience With and Without Directional Assistance: A Randomized Simulation Trial in a Community Setting
INTRODUCTION: Probability of survival after out-of-hospital cardiac arrest (OHCA) doubles when a bystander initiates cardiopulmonary resuscitation and uses an automated external defibrillator (AED) rapidly. National, state, and community efforts have increased placement of AEDs in public spaces; however, bystander AED use remains less than 2% in the United States. Little is known about the effect of giving bystanders directional assistance to the closest public access AED. METHODS: We conducted 35 OHCA simulations using a life-sized manikin with participants aged 18 through 65 years who searched for public access AEDs in 5 zones on a university campus. Zones varied by challenges to pedestrian AED acquisition and number of fixed AEDs. Participants completed 2 searches-first unassisted and then with verbal direction to the closest AED-and we compared AED delivery times. We conducted pretest and posttest surveys. RESULTS: In all 5 zones, the median time from simulated OHCA onset to AED delivery was lower when the bystander received directional assistance. Time savings (minutes:seconds) varied by zone, ranging from a median of 0:53 (P = 0.14) to 3:42 (P = 0.02). Only 3 participants immediately located the closest AED without directional assistance; more than half reported difficulty locating an AED. CONCLUSIONS: These findings may inform strategies to ensure that AEDs are consistently marked and placed in visible, accessible locations. Continued emphasis on developing strategies to improve lay bystanders' ability to locate and use AEDs may improve AED retrieval times and OHCA outcomes
From dynamical scaling to local scale-invariance: a tutorial
Dynamical scaling arises naturally in various many-body systems far from
equilibrium. After a short historical overview, the elements of possible
extensions of dynamical scaling to a local scale-invariance will be introduced.
Schr\"odinger-invariance, the most simple example of local scale-invariance,
will be introduced as a dynamical symmetry in the Edwards-Wilkinson
universality class of interface growth. The Lie algebra construction, its
representations and the Bargman superselection rules will be combined with
non-equilibrium Janssen-de Dominicis field-theory to produce explicit
predictions for responses and correlators, which can be compared to the results
of explicit model studies.
At the next level, the study of non-stationary states requires to go over,
from Schr\"odinger-invariance, to ageing-invariance. The ageing algebra admits
new representations, which acts as dynamical symmetries on more general
equations, and imply that each non-equilibrium scaling operator is
characterised by two distinct, independent scaling dimensions. Tests of
ageing-invariance are described, in the Glauber-Ising and spherical models of a
phase-ordering ferromagnet and the Arcetri model of interface growth.Comment: 1+ 23 pages, 2 figures, final for
Gravitational Lensing by Black Holes
We review the theoretical aspects of gravitational lensing by black holes,
and discuss the perspectives for realistic observations. We will first treat
lensing by spherically symmetric black holes, in which the formation of
infinite sequences of higher order images emerges in the clearest way. We will
then consider the effects of the spin of the black hole, with the formation of
giant higher order caustics and multiple images. Finally, we will consider the
perspectives for observations of black hole lensing, from the detection of
secondary images of stellar sources and spots on the accretion disk to the
interpretation of iron K-lines and direct imaging of the shadow of the black
hole.Comment: Invited article for the GRG special issue on lensing (P. Jetzer, Y.
Mellier and V. Perlick Eds.). 31 pages, 12 figure
- …