14,604 research outputs found

    A preliminary experiment definition for video landmark acquisition and tracking

    Get PDF
    Six scientific objectives/experiments were derived which consisted of agriculture/forestry/range resources, land use, geology/mineral resources, water resources, marine resources and environmental surveys. Computer calculations were then made of the spectral radiance signature of each of 25 candidate targets as seen by a satellite sensor system. An imaging system capable of recognizing, acquiring and tracking specific generic type surface features was defined. A preliminary experiment definition and design of a video Landmark Acquisition and Tracking system is given. This device will search a 10-mile swath while orbiting the earth, looking for land/water interfaces such as coastlines and rivers

    Exploring the networks of government scientists using Social Network Analysis: a scoping study

    Full text link
    Scientists working for the New South Wales (NSW) Office of Environment and Heritage (OEH) provide rigorous evidence and advice to support government priorities which include protecting the natural environment. They also collaborate with and attract non-government researchers to work on government priorities. In this scoping study, we used Social Network Analysis (SNA) to visualise the ego networks of six government scientists from OEH who work on biodiversity conservation and landscape management. This allowed us to explore the potential reach of their advice and information within OEH and beyond; and examine gaps and redundancy in the stacked ego networks

    Mechanical loss of a hydroxide catalysis bond between sapphire substrates and its effect on the sensitivity of future gravitational wave detectors

    Get PDF
    Hydroxide catalysis bonds are low mechanical loss joints which are used in the fused silica mirror suspensions of current room temperature interferometric gravitational wave detectors, one of the techniques which was essential to allow the recent detection of gravitational radiation by LIGO. More sensitive detectors may require cryogenic techniques with sapphire as a candidate mirror and suspension material, and thus hydroxide catalysis bonds are under consideration for jointing sapphire. This paper presents the first measurements of the mechanical loss of such a bond created between sapphire substrates and measured down to cryogenic temperatures. The mechanical loss is found to be 0.03±0.01 at room temperature, decreasing to (3±1)×10−4 at 20 K. The resulting thermal noise of the bonds on several possible mirror suspensions is presented

    Silicon mirror suspensions for gravitational wave detectors

    Get PDF
    One of the most significant limits to the sensitivity of current, and future, long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test masses and their suspensions. This paper reports results of analytical and experimental studies of the limits to thermal noise performance of cryogenic silicon test mass suspensions set by two constraints on suspension fibre dimensions: the minimum dimensions required to allow conductive cooling for extracting incident laser beam heat deposited in the mirrors; and the minimum dimensions of fibres (set by their tensile strength) which can support test masses of the size envisaged for use in future detectors. We report experimental studies of breaking strength of silicon ribbons, and resulting design implications for the feasibility of suspension designs for future gravitational wave detectors using silicon suspension fibres. We analyse the implication of this study for thermal noise performance of cryogenically cooled silicon suspensions

    Turbulence driven by outflow-blown cavities in the molecular cloud of NGC 1333

    Full text link
    Outflows from young stellar objects have been identified as a possible source of turbulence in molecular clouds. To investigate the relationship between outflows, cloud dynamics and turbulence, we compare the kinematics of the molecular gas associated with NGC 1333, traced in 13CO(1-0), with the distribution of young stellar objects (YSOs) within. We find a velocity dispersion of ~ 1-1.6 km/s in 13CO that does not significantly vary across the cloud, and is uncorrelated with the number of nearby young stellar outflows identified from optical and submillimeter observations. However, from velocity channel maps we identify about 20 cavities or depressions in the 13CO intensity of scales > 0.1-0.2 pc and velocity widths 1-3 km/s. The cavities exhibit limb brightened rims in both individual velocity channel maps and position velocity diagrams, suggesting that they are slowly expanding. We interpret these cavities to be remnants of past YSO outflow activity: If these cavities are presently empty, they would fill in on time scales of a million years. This can exceed the lifetime of a YSO outflow phase, or the transit time of the central star through the cavity, explaining the the absence of any clear correlation between the cavities and YSO outflows. We find that the momentum and energy deposition associated with the expansion of the cavities is sufficient to power the turbulence in the cloud. In this way we conclude that the cavities are an important intermediary step between the conversion of YSO outflow energy and momentum into cloud turbulent motions.Comment: Accepted for publication in ApJ. Check out http://astro.pas.rochester.edu/~aquillen/coolpics.html for channel map and PosVel movies of N133
    • …
    corecore