4 research outputs found

    Performance of two-stage fan with larger dampers on first-stage rotor

    Get PDF
    The performance of a two stage, high pressure-ratio fan, having large, part-span vibration dampers on the first stage rotor is presented and compared with an identical aerodynamically designed fan having smaller dampers. Comparisons of the data for the two damper configurations show that with increased damper size: (1) very high losses in the damper region reduced overall efficiency of first stage rotor by approximately 3 points, (2) the overall performance of each blade row, downstream of the damper was not significantly altered, although appreciable differences in the radial distributions of various performance parameters were noted, and (3) the lower performance of the first stage rotor decreased the overall fan efficiency more than 1 percentage point

    Design and performance of a 427-meter-per-second-tip-speed two-stage fan having a 2.40 pressure ratio

    Get PDF
    The aerodynamic design and the overall and blade-element performances are presented of a 427-meter-per-second-tip-speed two-stage fan designed with axially spaced blade rows to reduce noise transmitted upstream of the fan. At design speed the highest recorded adiabatic efficiency was 0.796 at a pressure of 2.30. Peak efficiency was not established at design speed because of a damper failure which terminated testing prematurely. The overall efficiencies, at 60 and 80 percent of design speed, peaked at approximately 0.83

    Performance of two-stage fan having low-aspect-ratio first-stage rotor blading

    Get PDF
    The NASA two stage fan was tested with a low aspect ratio first stage rotor having no midspan dampers. At design speed the fan achieved an adiabatic design efficiency of 0.846, and peak efficiencies for the first stage and rotor of 0.870 and 0.906, respectively. Peak efficiency occurred very close to the stall line. In an attempt to improve stall margin, the fan was retested with circumferentially grooved casing treatment and with a series of stator blade resets. Results showed no improvement in stall margin with casing treatment but increased to 8 percent with stator blade reset

    Stalled and stall-free performance of axial-flow compressor stage with three inlet-guide-vane and stator-blade settings

    Get PDF
    The performance of the first stage of a transonic, multistage compressor was mapped over a range of inlet-guide-vane and stator-blade settings. Both stall-free and deep-stall performance data were obtained. For the settings tested, as stall was encountered and flow was further reduced, a relatively sharp drop in pressure ratio occurred and was followed by a continuing but more gradual reduction in pressure ratio with reduced flow. The position of the stall line on the map of pressure ratio against equivalent weight flow was essentially unaffected over the range of inlet-guide-vane and stator-blade settings
    corecore