31 research outputs found

    DaXBench: Benchmarking Deformable Object Manipulation with Differentiable Physics

    Full text link
    Deformable Object Manipulation (DOM) is of significant importance to both daily and industrial applications. Recent successes in differentiable physics simulators allow learning algorithms to train a policy with analytic gradients through environment dynamics, which significantly facilitates the development of DOM algorithms. However, existing DOM benchmarks are either single-object-based or non-differentiable. This leaves the questions of 1) how a task-specific algorithm performs on other tasks and 2) how a differentiable-physics-based algorithm compares with the non-differentiable ones in general. In this work, we present DaXBench, a differentiable DOM benchmark with a wide object and task coverage. DaXBench includes 9 challenging high-fidelity simulated tasks, covering rope, cloth, and liquid manipulation with various difficulty levels. To better understand the performance of general algorithms on different DOM tasks, we conduct comprehensive experiments over representative DOM methods, ranging from planning to imitation learning and reinforcement learning. In addition, we provide careful empirical studies of existing decision-making algorithms based on differentiable physics, and discuss their limitations, as well as potential future directions.Comment: ICLR 2023 (Oral

    Combining spectral and texture feature of UAV image with plant height to improve LAI estimation of winter wheat at jointing stage

    Get PDF
    IntroductionLeaf area index (LAI) is a critical physiological and biochemical parameter that profoundly affects vegetation growth. Accurately estimating the LAI for winter wheat during jointing stage is particularly important for monitoring wheat growth status and optimizing variable fertilization decisions. Recently, unmanned aerial vehicle (UAV) data and machine/depth learning methods are widely used in crop growth parameter estimation. In traditional methods, vegetation indices (VI) and texture are usually to estimate LAI. Plant Height (PH) unlike them, contains information about the vertical structure of plants, which should be consider.MethodsTaking Xixingdian Township, Cangzhou City, Hebei Province, China as the research area in this paper, and four machine learning algorithms, namely, support vector machine(SVM), back propagation neural network (BPNN), random forest (RF), extreme gradient boosting (XGBoost), and two deep learning algorithms, namely, convolutional neural network (CNN) and long short-term memory neural network (LSTM), were applied to estimate LAI of winter wheat at jointing stage by integrating the spectral and texture features as well as the plant height information from UAV multispectral images. Initially, Digital Surface Model (DSM) and Digital Orthophoto Map (DOM) were generated. Subsequently, the PH, VI and texture features were extracted, and the texture indices (TI) was further constructed. The measured LAI on the ground were collected for the same period and calculated its Pearson correlation coefficient with PH, VI and TI to pick the feature variables with high correlation. The VI, TI, PH and fusion were considered as the independent features, and the sample set partitioning based on joint x-y distance (SPXY) method was used to divide the calibration set and validation set of samples.ResultsThe ability of different inputs and algorithms to estimate winter wheat LAI were evaluated. The results showed that (1) The addition of PH as a feature variable significantly improved the accuracy of the LAI estimation, indicating that wheat plant height played a vital role as a supplementary parameter for LAI inversion modeling based on traditional indices; (2) The combination of texture features, including normalized difference texture indices (NDTI), difference texture indices (DTI), and ratio texture indices (RTI), substantially improved the correlation between texture features and LAI; Furthermore, multi-feature combinations of VI, TI, and PH exhibited superior capability in estimating LAI for winter wheat; (3) Six regression algorithms have achieved high accuracy in estimating LAI, among which the XGBoost algorithm estimated winter wheat LAI with the highest overall accuracy and best results, achieving the highest R2 (R2 = 0.88), the lowest RMSE (RMSE=0.69), and an RPD greater than 2 (RPD=2.54).DiscussionThis study provided compelling evidence that utilizing XGBoost and integrating spectral, texture, and plant height information extracted from UAV data can accurately monitor LAI during the jointing stage of winter wheat. The research results will provide a new perspective for accurate monitoring of crop parameters through remote sensing

    Assessing rice chlorophyll content with vegetation indices from hyperspectral data

    Get PDF
    Abstract. Leaf chlorophyll content is not only an important biochemical parameter for determinating the capacity of rice photosynthesis, but also a good indicator of crop stress, nutritional state. Due to the reliable, operational and non-destructive advantages, hyperspectral remote sensing plays a significant role for assessing and monitoring chlorophyll content. In the study, a few of typical vegetation indices (VI) with the combination of 670nm and 800nm band reflectance, Normalized Difference Vegetation Index (NDVI), Modified Simple Ratio index (MSR), Modified Chlorophyll Absorption Ratio Index (MCARI), Transformed Chlorophyll Absorption Ratio Index (TCARI), and Optimized Soil-Adjusted Vegetation Index (OSAVI) are modified by using 705nm and 750nm band reflectance so as to reduce the effect of spectral saturation in 660-680nm absorptive band region, and then used to assess the rice chlorophyll content. The result shows that the five mentioned VIs have better correlation with rice chlorophyll content while using 705nm and 750nm. In addition, in the study the Weight optimization combination (WOC) principle is utilized to further assess the capacity of the five modified VIs for estimating rice chlorophyll content, it is proved that OSAVI and MSR display the better performance

    Tea Cultivation Suitability Evaluation and Driving Force Analysis Based on AHP and Geodetector Results: A Case Study of Yingde in Guangdong, China

    No full text
    Tea is an economically important crop. Evaluating the suitability of tea can better optimize the regional layout of the tea industry and provide a scientific basis for tea planting plans, which is also conducive to the sustainable development of the tea industry in the long run. Driving force analysis can be carried out to better understand the main influencing factors of tea growth. The main purpose of this study was to evaluate the suitability of tea planting in the study area, determine the prioritization of tea industry development in this area, and provide support for the government’s planning and decision making. This study used Sentinel image data to obtain the current land use data of the study area. The results show that the accuracy of tea plantation classification based on Sentinel images reached 86%, and the total accuracy reached 92%. Then, we selected 14 factors, including climate, soil, terrain, and human-related factors, using the analytic hierarchy process and spatial analysis technology to evaluate the suitability of tea cultivation in the study area and obtain a comprehensive potential distribution map of tea cultivation. The results show that the moderately suitable area (36.81%) accounted for the largest proportion of the tea plantation suitability evaluation, followed by the generally suitable area (31.40%), the highly suitable area (16.91%), and the unsuitable area (16.23%). Among these areas, the highly suitable area is in line with the distribution of tea cultivation at the Yingde municipal level. Finally, to better analyze the contribution of each factor to the suitability of tea, the factors were quantitatively evaluated by the Geodetector model. The most important factors affecting the tea cultivation suitability evaluation were temperature (0.492), precipitation (0.367), slope (0.302), and elevation (0.255). Natural factors influence the evaluation of the suitability of tea cultivation, and the influence of human factors is relatively minor. This study provides an important scientific basis for tea yield policy formulation, tea plantation site selection, and adaptation measures
    corecore