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Introduction: Leaf area index (LAI) is a critical physiological and biochemical

parameter that profoundly affects vegetation growth. Accurately estimating the

LAI for winter wheat during jointing stage is particularly important for monitoring

wheat growth status and optimizing variable fertilization decisions. Recently,

unmanned aerial vehicle (UAV) data and machine/depth learning methods are

widely used in crop growth parameter estimation. In traditional methods,

vegetation indices (VI) and texture are usually to estimate LAI. Plant Height

(PH) unlike them, contains information about the vertical structure of plants,

which should be consider.

Methods: Taking Xixingdian Township, CangzhouCity, Hebei Province, China as

the research area in this paper, and four machine learning algorithms, namely,

support vector machine(SVM), back propagation neural network (BPNN),

random forest (RF), extreme gradient boosting (XGBoost), and two deep

learning algorithms, namely, convolutional neural network (CNN) and long

short-term memory neural network (LSTM), were applied to estimate LAI of

winter wheat at jointing stage by integrating the spectral and texture features as

well as the plant height information from UAV multispectral images. Initially,

Digital SurfaceModel (DSM) andDigital OrthophotoMap (DOM)were generated.

Subsequently, the PH, VI and texture features were extracted, and the texture

indices (TI) was further constructed. The measured LAI on the ground were

collected for the same period and calculated its Pearson correlation coefficient

with PH, VI and TI to pick the feature variables with high correlation. The VI, TI,

PH and fusion were considered as the independent features, and the sample set

partitioning based on joint x-y distance (SPXY) method was used to divide the

calibration set and validation set of samples.

Results: The ability of different inputs and algorithms to estimate winter wheat

LAI were evaluated. The results showed that (1) The addition of PH as a feature

variable significantly improved the accuracy of the LAI estimation, indicating that

wheat plant height played a vital role as a supplementary parameter for LAI

inversion modeling based on traditional indices; (2) The combination of texture
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features, including normalized difference texture indices (NDTI), difference

texture indices (DTI), and ratio texture indices (RTI), substantially improved the

correlation between texture features and LAI; Furthermore, multi-feature

combinations of VI, TI, and PH exhibited superior capability in estimating LAI

for winter wheat; (3) Six regression algorithms have achieved high accuracy in

estimating LAI, among which the XGBoost algorithm estimated winter wheat LAI

with the highest overall accuracy and best results, achieving the highest R2

(R2 = 0.88), the lowest RMSE (RMSE=0.69), and an RPD greater than

2 (RPD=2.54).

Discussion: This study provided compelling evidence that utilizing XGBoost and

integrating spectral, texture, and plant height information extracted from UAV

data can accurately monitor LAI during the jointing stage of winter wheat. The

research results will provide a new perspective for accurate monitoring of crop

parameters through remote sensing.
KEYWORDS

plant height, feature fusion, machine learning, deep learning, UAV, LAI,
winter wheat
1 Introduction

Winter wheat is the second-largest grain crop in China in terms

of cultivated area and total output (Han, 2011), and it holds

significant economic value. Investigating the agronomic

parameters of winter wheat is essential to agricultural production

management, especially to enhance grain production. Leaf Area

Index (LAI) stands as a crucial agronomic parameter for winter

wheat, which is defined as the ratio of total plant leaf area per unit of

land area to land area. LAI is directly related to crop growth (Casa

et al., 2012) and serves as a vital indicator for monitoring crop

growth, biomass estimation, and pre-harvest yield prediction

during the fertility period (Pinter et al., 2003; Dente et al., 2008).

In the context of production management, wheat topdressing

during the jointing stage is pivotal to improving yield and quality.

China has implemented a zero-growth policy for chemical fertilizers

and pesticides (Cui et al., 2021), alongside developing variable rate

fertilizer applicators to enable precise fertilizer application based on

local conditions. Therefore, the accurate and rapid estimation of

LAI for winter wheat at jointing stage is not only conducive to the

real-time monitoring of crop growth and development, but also has

important significance for the formulation of variable rate

fertilization prescription for agricultural machinery, reducing the

use of chemical fertilizer and mitigating soil pollution.

The measurement methods of LAI include direct and indirect

approaches. The direct method is a traditional and destructive

method, mainly through manual field observation, which is time-

consuming and laborious (Hu et al., 2018). The indirect method

employs optical instruments or remote sensing inversion, offering a

convenient and fast approach (Torres-S´anchez et al., 2014).
02
Among these methods, remote sensing technology has gained

widespread adoption as an indirect means of monitoring

agronomic parameters (Zhang et al., 2008). Remote sensing

platforms can be categorized into ground, aerial and space remote

sensing platform based on their height above the ground (Lu et al.,

2022). Ground remote sensing platforms mainly employ

spectrograph for measurement. However, due to the height

restrictions, these platforms face the challenge of obtaining Digital

Orthophoto Maps (DOM) and monitor large-scale areas efficiently

(Behrens and Diepenbrock, 2006; Nie et al., 2016). Space remote

sensing platforms mainly rely on satellites to acquire data, enabling

the monitoring large areas. Nevertheless, factors such as satellite

revisit time and atmospheric conditions often hinder meeting the

demands for spatiotemporal resolution (Liu et al., 2012). An

alternative approach is the aerial operation mode, which employs

unmanned aerial vehicle (UAV) (Li et al., 2019) for remote sensing.

Compared to manned aircraft, UAV remote sensing has the

advantages of low cost, simple operation and strong flexibility

(Hassan et al., 2019). Furthermore, the multispectral sensors

carried by UAV provide more bands than digital camera sensors,

and the spectral information avoids data redundancy seen in

hyperspectral sensors, which can be effectively applied to monitor

crop LAI (Sun et al., 2019).

Currently, there are two implementations for monitoring crop

LAI using UAV multispectral remote sensing. One is a radiative

transfer physical model, and the other is a statistical empirical

model. The physical model is based on the reflection and absorption

between light and crops, which has a certain mechanism and strong

versatility (Fu et al., 2022a). However, the model involves complex

formulas and requires many parameters, which makes it difficult to
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find the optimal solution (Du et al., 2016). In contrast, the empirical

model establishes the relationship between UAV image features and

winter wheat growth parameters through statistical methods (Liang

et al., 2015; Cao et al., 2020). This method proves to be

straightforward and user-friendly, estimating LAI by analyzing

the statistical relationship between raw spectra or extracted

vegetation indices and ground-based measured LAI data.

Nonetheless, apart from spectral features, UAV multispectral

images also provide abundant texture information associated with

vegetation growth (Kupidura, 2019). Texture information reflect

inherent characteristics of the image, making it essential to consider

them when extracting vegetation growth parameters from

multispectral images. Some scholars have successfully estimated

LAI of rice (Cao et al., 2022), potato (Li et al., 2023), sorghum

(Potgieter et al., 2017) and other crops, as well as biomass (Dai et al.,

2022) and yield (Fu et al., 2020) of winter wheat by integrating

spectral and texture features, providing promising results. However,

previous studies have mostly directly input a large number of

texture features into the model for training, lacking the

optimization of texture features. To address this limitation, a

more refined and selective approach should be considered to

enhance the effectiveness and accuracy of integrating texture

information into the model (Zhu et al., 2019). Texture features

provide valuable information about the small-scale structures and

details in an image. The optimization of extraction methods plays a

pivotal role in achieving a more precise capture of structural

information within the image, consequently elevating the

accuracy of image analysis. Simultaneously, this optimization

process contributes to the enhancement of the level of detail

present within the image, rendering it richer in information

content and enhancing the effectiveness and accuracy of

integrating texture information into the model. For instance, the

optimized texture indices can simultaneously capture the influence

of two distinct texture features on wheat LAI monitoring (Zhang

et al., 2022b).

The spectral and texture information extracted from the UAV

multispectral image only contains the crop canopy information.

During the period of crop growth, the vegetation indices are not

sensitive to the changes in canopy information, and the spectral

signal may become saturated (Liu et al., 2018), thereby affecting the

accuracy of LAI estimation to some extent. Recent studies have

revealed a significant correlation between crop canopy height and

LAI (Liu et al., 2022). Notably, extracting plant height from UAV

based on canopy height model (CHM) can alleviate the issue of

spectral saturation. Niu et al. (Niu et al., 2018) have demonstrated

improvements in LAI estimation accuracy by fusing plant height

data with UAV digital image variables for maize breeding materials,

surpassing the performance of using only digital image variables.

Gao et al. (Gao et al., 2020) have successfully enhanced the

inversion accuracy of LAI by combining crop height parameters

with vegetation indices. Therefore, it is necessary to incorporate

crop vertical structure characteristics, such as height, into the

inversion process of winter wheat LAI to get more accurate and

reliable results.

Generally speaking, researchers commonly use empirical or

semi empirical models, employing statistical regression analysis of
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spectral features, to construct LAI estimation models. With the

development of crop LAI inversion research, some researchers have

begun exploring the utilization of machine learning (ML)

techniques to build LAI inversion model and enhance estimation

accuracy. Partial Least Square Regression (PLSR) (Hasan et al.,

2019), Support Vector Machine (SVM) (Azadbakht et al., 2019),

Random Forest (RF) (Zhang et al., 2018), Extreme Gradient

Boosting (XGBoost) (Zhang et al., 2021c), and other machine

learning algorithms are commonly used for wheat LAI inversion.

Furthermore, deep learning (DL), a sophisticated machine learning

algorithm, has gained traction in crop yield estimation and

prediction, with convolutional neural network (CNN) and

recursive neural network (RNN) being widely applied in related

studies (Khaki et al., 2019; Koirala et al., 2019). Long short-term

memory (LSTM) neural network is an improved RNN with a

special recursive structure and gating mechanism, which can

adjust the information in and out of the unit, and has high

prediction accuracy in the field of wheat yield and biomass

estimation (Wang et al., 2022a). These ML-based methods

operate on diverse model frameworks, through learning from the

training set data to construct the inversion model, thereby

establishing the relationship between predictor variables and

response variables. Leveraging robust data analysis capabilities

and achieving high estimation accuracy, ML approaches

effectively circumvent the shortcomings of empirical or semi-

empirical models prone to pathological issues (Pearson and

Miller, 1972).

The above studies have achieved high estimation accuracy using

various methods, which the R2 of the optimal models was range from

0.74 to 0.78. However, there remains a lack of research in exploring

the potential of using ML/DL to improve the accuracy of winter

wheat LAI estimation by combining spectral features, optimized

texture features, and plant height based on UAV multispectral

image. In light of this, the main objectives of the study were (1) to

examine the influence of plant height on winter wheat LAI estimation

during the jointing stage; (2) to evaluate the disparities in multi-

feature estimation of winter wheat LAI with combinations of

vegetation indices (VI), texture indices (TI), and plant height (PH);

and (3) to conduct a comparative analysis of performances in the

inversion modeling of winter wheat LAI with six regression

algorithms, including support vector machine (SVM), back

propagation neural network (BPNN), random forest (RF), extreme

gradient boosting (XGBoost), convolutional neural network (CNN)

and long short-term memory neural network (LSTM). The

achievement of these objectives will provide a more reliable

foundation for winter wheat LAI estimation, offering more precise

monitoring and decision support for agricultural production.
2 Materials and methods

2.1 Study area and experimental design

Geographic Location: The study area is located in Xixindian

Township, Cangzhou City, Hebei Province, China. The

experimental field spans a geographic range from 116°08'38" E to
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116°10'42" E longitude, and 37°58'40" N to 37°59'09" N latitude

(Figure 1).

Climate: This region exhibits a warm temperate continental

monsoon climate, characterized by pleasant temperatures. The

annual average temperature is 12.7°C. Abundant sunlight graces

the area, with an average annual sunshine duration of

approximately 2.78 h. Precipitation predominantly occurs during

the summer months, totaling around 543 mm of rainfall per year.

The favorable climatic conditions in the region provide conducive

circumstances for the growth and development of winter wheat.

The above statistics are based on Government of the People&’s

Republic of China information published in 2022.

Topography: The topography is flat, providing an ideal

environment for the cultivation of diverse crops. The topographical

conditions may influence the distribution and drainage of water,

thereby impacting the growth conditions of winter wheat. Different

topographical features may result in variations in soil moisture across

different regions, consequently affecting the estimation of LAI.

Cropping System: Notably, summer maize and winter wheat

serve as the primary cash crops within the experimental area,

employing a rotational planting system where winter wheat is

planted after the maize harvest.

Varieties and Practices: Due to the lack of standardized

management practices among winter wheat farmers in the region,

there is a significant variation in the selection of winter wheat varieties,

irrigation levels, and fertilizer application. Different characteristics

among varieties may lead to variations in LAI. Because distinct

winter wheat varieties may exhibit differences in growth rates, leaf

quantities, and structures, thereby influencing the estimation of their

LAI. In this paper, the prominent winter wheat varieties cultivated

include Jimai 22, Jimai 518, Luyuan 502, Shandong 20, and Tumai 6,

each with distinct seeding rates ranging from 225 kg/ha to 300 kg/ha.

The predominant irrigation methods employed are surface irrigation

and sprinkler irrigation. In addition, different types and ratios of

fertilizers may significantly impact leaf growth, leaf area, and

photosynthesis. For example, fertilizers with high nitrogen content

may stimulate leaf growth, consequently affecting the estimated values
Frontiers in Plant Science 04
of LAI. The primary fertilizers utilized are Tuboshi (N-P2O5-K2O, 28-

6-6) with ≥40% total nutrients, Jindadi (N-P2O5-K2O, 19-15-6) with

≥40% total nutrients, and Xishouliang (N-P2O5-K2O, 17-23-5) with

≥45% total nutrients. Across all varieties, the standard fertilizer

application rate during cultivation is 600 kg/ha.
2.2 Data collection and preprocessing

2.2.1 UAV image acquisition and pre-processing
In this experiment, due to its compatibility with the research

objectives, the eBee SQ precision agriculture UAV equipped with

the Parrot Sequoia multispectral sensor was selected. The Parrot

Sequoia sensor was capable of capturing spectral data in four bands

simultaneously, including green (550nm), red (660nm), red edge

(735nm), and near-infrared (790nm) (Handique et al., 2017). Prior

to the experiment, it was crucial for the success of the study to

conduct flight planning using specialized software to determine the

flight routes and parameters, including a flight altitude of 95.5m, a

ground resolution of 9cm and an 80% overlap in both along-track

and across-track directions. The UAV was launched using a hand-

throw method, and before take off, take photos of the radiation

correction plate and ensure the absence of shadows on the

calibration board. The data acquisition was conducted on October

21, 2020 (at bare soil stage) and March 31, 2021 (at jointing stage)

between 10:00 and 14:00 to reduce the influence of the changes in

the solar altitude angle on the experiments. In order to minimize

optical distortions and ensure clear image acquisition, the weather

conditions were clear skies, without any clouds, and a gentle breeze

throughout the entire data collection period.

The acquired UAV multispectral remote sensing data were

preprocessed, which primarily included image correction, image

mosaic, image clipping and image resampling. Pix4DMapper and

ArcGIS 10.4 are widely-used software tools in the fields of Remote

Sensing (RS) and UAV data processing. In this study, the UAV

multispectral images were geometrically corrected and stitched with

Pix4DMapper software to generate Digital Surface Model (DSM)
FIGURE 1

Study area of winter wheat LAI estimation experiment using UAV images.
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and Digital Orthophoto Map (DOM), so as to obtain the spectral

reflectance data and height data of the study area. After clipping

based on the vector boundaries of the study area in ArcGIS 10.4

software, the image resolution was resampled to 0.1m using the

cubic convolution difference method, aiming to ensure a sufficiently

high detail resolution to accurately capture vegetation features.

2.2.2 Ground data collection
The ground data collection was synchronized with the

acquisition of UAV multispectral remote sensing data, and

mainly included the value of PH and LAI, coordinate data of

sample points and control points. The measurements of PH and

LAI were primarily conducted for the establishment and validation

of estimation models. The sample point coordinates involved

recording the positions where PH and LAI were measured. On

the other hand, control points were established to provide ground

truth coordinates, facilitating the correlation with UAV data.

Specifically, data were collected from 79 sampling points evenly

distributed in the study area to ensure comprehensive coverage.

This uniform distribution helped capture spatial variations in

vegetation, enhancing the representativeness and reliability of

the data.

Wheat is conventionally sown at approximately 15 cm intervals.

This seeding technique plays a pivotal role in ensuring effective soil

surface coverage, mitigating soil moisture evaporation, and

consequently, fostering water conservation and yield augmentation.

Therefore, during the measurement of PH(unit: cm), three

representative wheat plants that encapsulate the comprehensive

growth status at the sampling point are meticulously selected

within a 50 cm radius around the designated point. A tape

measure was used to measure the vertical height of each wheat

plant, and the average value was taken as the PH of each sample point

to ensure the data accuracy.

The measurement of LAI was conducted using the LAI-2200C

plant canopy analyzer. The steps were taken to ensure data accuracy

as follows. Prior tomeasurement, the instrument was aligned with the

sun to determine the incident light intensity. During measurement,

efforts were made to keep the instrument as horizontally aligned as

possible. Three measurements were taken at each sampling point, and

the average value was considered as the final LAI. LAI in the sample

dataset ranged from 0.61 to 8.57, the average was 3.89 and the

standard deviation was 1.93. Simultaneously, the HI-TARGET iRTK2

was employed for Real-Time Kinematic (RTK) measurements,

allowing the acquisition of coordinates for each sample point and

control point.

2.2.3 Winter wheat pixels extraction
The green, red, near-infrared and red edge bands of UAV

multispectral images, as well as normalized difference vegetation

index (NDVI), enhanced vegetable index 2 (EVI2), red edge

optimized soil-adjusted vegetation index (REOSAVI) and

optimized soil-adjusted vegetation index (OSAVI) were used to

input into the random forest classifier to extract winter wheat pixels

(Fu et al., 2022b). NDVI is widely applied to reflect vegetation

growth conditions. EVI2 considers atmospheric correction and soil
Frontiers in Plant Science 05
influences, providing more accurate monitoring in areas with high

vegetation cover. REOSAVI is an index optimized for the red-edge

band that accounts for soil influences. OSAVI is a soil-adjusted

vegetation index optimized to reduce the impact of the soil surface.

Its reduction of soil effects in high vegetation density environments

contributes to a more accurate assessment of vegetation conditions.

Random Forest classifier is capable of efficiently handling large-

scale datasets, exhibiting high classification accuracy, and is

particularly well-suited for pixel-level image classification tasks.

This study comprehensively assessed the quality of pixel

extraction using overall accuracy and the kappa coefficient.

Overall accuracy measures the overall precision of the

classification results, while the kappa coefficient provides

sensitivity to random errors and omissions in the classification.

These metrics reflect the accuracy of the extraction process. The

overall accuracy and kappa coefficient were 98.74% and 91.21%,

respectively. ENVI 5.3 is software designed for remote sensing data

analysis and image processing. Then this process was implemented

in ENVI 5.3, with all parameters set to their default values.
2.3 LAI Estimation input features

2.3.1 Vegetation indices
Vegetation indices (VI) are established by using the relationship

between spectral data and various physical and chemical parameters of

vegetation, which can effectively reflect the growth status of plants, and

are widely used in the monitoring of physiological and biochemical

parameters of plants. Generally, it is obtained by selecting two or more

band reflectance data from spectral data and performing a series of

combined operations such as addition, subtraction, multiplication and

division. Compared with a single band, the band combination method

is not only more sensitive to vegetation characteristics, but also can

eliminate environmental background noise to a certain extent (Huete

et al., 1985). At present, there are many kinds of vegetation indices,

such as the difference vegetation index (DVI) and enhanced vegetable

index2 (EVI2), which can control the impact of soil and environmental

background. Simultaneously, red edge renormalized difference

vegetation Index (RERDVI) primarily focuses on the structure and

coverage of vegetation, aiding in understanding the spatial distribution

and density of vegetation. Red edge chlorophyll Index (Clre) reflects

variations in chlorophyll content within vegetation, serving to assess

the growth status and overall health of the vegetation. Based on the

previous research results, this paper selected 17 vegetation indices with

great effect for retrieving wheat LAI, which were divided into greenness

indices, structure indices and pigments indices, according to their main

functions, as shown in Table 1. The size of the range of spectra

measured at each sampling point was 10×10cm.
2.3.2 Texture indices
Richer texture information related to plant growth can be extracted

from UAV multispectral images. Texture features are distinct from

image attributes such as grayscale and color, it is represented by the

grayscale distribution of pixels and their surrounding spatial neighbors.

It is the reflection of the internal characteristics of plant on remote
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sensing images. It helps to reveal the details of vegetation structure,

including the arrangement and density of leaves, which directly affect

the estimation of LAI. At present, the most widely used is the gray level

co-occurrence matrix (GLCM) of statistical analysis method, which has

rotation invariance, multi-scale characteristics and low computational

complexity. In this study, GLCMwas utilized to extract texture features

from the green, red, red edge, and near-infrared bands of the

multispectral imagery in ENVI 5.3 software. Specifically, eight texture

features were extracted from each band, including mean (MEA),

variance (VAR), homogeneity (HOM), contrast (CON), dissimilarity

(DIS), entropy (ENT), second moment (SEC), and correlation (COR),

resulting in a total of 32 texture features. MEA provides insights into

the overall trends of vegetation distribution and brightness, while VAR

reveals the degree of dispersion between pixel grayscale levels in
Frontiers in Plant Science 06
GLCM. HOM measures the uniformity of vegetation texture, CON

captures brightness variation, DIS assesses dissimilarity in texture, ENT

indicates texture complexity, SEC reflects overall texture trends, and

COR measures the linear relationship between vegetation structures.

The selection of these texture features is based on their sensitivity to

vegetation structure and their proven performance in previous studies

on texture analysis. In the course of extraction, the inter-pixel offset was

established at a distance of one pixel, with preference given to the

utilization of 3×3 window. Grayscale gradation was set to 64, while the

angle parameter retained its default value.

Similar to the calculation of vegetation indices, based on the 32

texture features obtained above, the texture indices can be

calculated by combining two different features (Zheng et al.,

2018). The three kinds of texture indices used in this paper are
TABLE 1 VI used in this study.

Vegetation Index Calculations References

Greenness Indices

Ratio Vegetation Index RVI =
NIR
R

Pearson and Miller, 1972

Difference Vegetation Index DVI = NIR − R Becker and Choudhury, 1988

Normalized Difference Vegetation Index NDVI =
NIR − R
NIR + R

Rouse et al., 1974

Green Normalized Difference Vegetation Index GNDVI =
NIR − G
NIR + G

Gitelson et al., 1996

Enhanced Vegetation Index2 EVI2 =
2:5� (NIR − R)
NIR + 2:4� R + 1

Jiang et al., 2008

Green Chlorophyll index CLgreen =
NIR
G − 1

Gitelson et al., 2006

Structure Indices

Modified simple ratio
MSR =

NIR
R − 1ffiffiffiffiffiffi
NIR
R

q
+ 1 Chen and Cihlar, 1996

Modified Soil Adjusted Vegetation Index MSAVI = 0:5�

(2� NIR + 1)−

(2� NIR + 1)2

−8� (NIR − R)

0
@

1
A0:5

2
66664

3
77775 Daughtry et al., 2000

Green Optimized soil-adjusted vegetation index GOSAVI = 1:16� NIR − G
NIR + G + 0:16

Gilabert et al., 2002

Red Edge Optimized soil-adjusted vegetation index REOSAVI = 1:16� NIR − R
NIR + R + 0:16

Kim et al., 1994

Red Edge Renormalized difference vegetation Index RERDVI =
NIR − RE
NIR + RE

Kim et al., 1994

Chlorophyll Content Indices

Red edge Chlorophyll Index CLre =
NIR

RE − 1
Gitelson et al., 2006

Chlorophyll Absorption Ratio Index CARI = (RE − R) − 0:2� (RE + R) Rondeaux et al., 1996

Normalized Green Red Difference Index NGRDI =
G − R
G + R

Potgieter et al., 2017

Triangular Vegetation Index TVI = 60� (NIR − G) − 100� (R − G) Broge and Leblanc, 2001

Modified triangular vegetation index 2
MTVI2 =

1:5�
1:2� (NIR − G)

−2:5� (R − G)

0
@

1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2� NIR + 1)2−

(6� NIR − 5� ffiffiffi
R

p
) − 0:5

vuuut
Haboudane, 2004

MERIS Terrestrial Chlorophyll Index MTCI =
NIR − RE
RE − R

Dash and Curran, 2004
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normalized difference texture indices (NDTI), difference texture

indices (DTI) and ratio texture indices (RTI). Matlab r2021a is a

kind of software widely used in data processing. It was used to

calculate them and 1984 TI were produced.

NDTI =
T1 �T2

T1 + T2
(1)

DTI = T1 �T2 (2)

RTI =
T1

T2
(3)

where T1 and T2 represent the random texture features of any

band in the green, red, red edge and near-infrared bands respectively.

2.3.3 Plant height

The PH of winter wheat was extracted by generating DSM using

UAV multispectral images during the bare soil stage and jointing

stage in the study area. The DSM generated during the bare soil

stage was labeled as DSM0, while the DSM generated during the

jointing stage was labeled as DSM1. The PH was obtained by

calculating the difference between DSM1 and DSM0, with DSM0

serving as the reference baseline (Figure 2).

PH = DSM1 − DSM0 (4)
2.4 LAI estimation with UAV images and
accuracy verification

The technical route of winter wheat LAI estimation at jointing

stage using UAV multispectral images is shown in Figure 3.
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2.4.1 LAI Estimation algorithms
The correlation between the above indices and LAI was

analyzed. Vegetation indices and texture indices with strong

correlations (VI, TI), along with PH, were chosen as independent

variables. The measured LAI on the ground was considered as the

dependent variable. Different machine learning algorithms (RF,

XGBoost, SVM, BPNN) and two deep learning algorithms (CNN

and LSTM) were employed to explore the potential of combining

spectral and texture features with PH for the winter wheat LAI

estimation. The selection of these algorithms is based on their

widespread application and success in handling complex nonlinear

relationships, feature extraction, and generalization performance.

SVM and RF were chosen for their excellence in capturing

nonlinear patterns, while BPNN was favored for its ability to

model intricate relationships. XGBoost was considered a robust

regression algorithm due to its outstanding performance in

handling high-dimensional data, mitigating overfitting, and

improving overall model performance. As for deep learning

algorithms, CNN and LSTM were selected to extract spatial and

temporal features from multispectral images captured by UAV,

providing a more comprehensive understanding of the dynamic

processes of vegetation growth. The above models were constructed

by Matlab r2021a.

RF algorithm, employing decision trees as base learners

(Beriman, 2001), constructs multiple trees in parallel by randomly

selecting attributes. The prediction results of all decision trees are

averaged to obtain the final regression modeling result of the entire

random forest. Due to its random sampling and feature generation

methods in decision trees, RF can improve the prediction accuracy

of the model without significantly increasing computational

complexity. The key parameters in RF include the number of

trees and the number of nodes. After repeated debugging and

optimization, the number of trees was determined to be 500, and
FIGURE 2

Principle of height extraction based on DSM.
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the minimum number of samples for leaf nodes was set to 8 in

this study.

XGBoost, an enhanced gradient boosting algorithm, combines

multiple weak classifiers into a robust classifier (Chen and Guestrin,

2016). By separating the selection of the loss function from the

optimization of the modeling algorithm and the selection of

parameters, the algorithm can adaptively choose the appropriate

loss function based on specific requirements or objectives, thereby

enhancing the algorithm’s applicability (Dhaliwal et al., 2018).

XGBoost intergrates weak classifiers and enabling flexible loss

function selection to enhance the modeling capability and overall

performance. The primary settings for the kernel parameters were

as follows: learning rate was set to 0.5, the maximum depth of tree

was set to 1, the gamma was set to 0.01, the regularization

parameters alpha and lambda were set to 0.02 and 0.1,

respectively. Additionally, the subsampling method, subsample

was set to 0.3, and colsample_bytree was set to 0.5.

SVM was chosen for small sample learning (Zhang et al.,

2021a), utilizing the Radial Basis Function (RBF) kernel function.

Its fundamental idea is to find an optimal hyperplane that

minimizes the error between training sample points and the

hyperplane. The optimal kernel parameters (g) and regularization

parameter (c) were determined through adjustment and

optimization. BPNN possesses strong fault tolerance and adaptive
Frontiers in Plant Science 08
learning capabilities. It consists of input layers, hidden layers, and

an output layer (Panda et al., 2010). By continuously adjusting the

number of neurons in the hidden layers, the data is iteratively

trained to obtain an optimal model. In this study, the number of

hidden layers and the number of nodes were determined to be

1, respectively.

CNNs are capable of unsupervised feature learning,

demonstrating remarkable performance in automated feature

acquisition.The model architecture comprises convolutional layers,

pooling layers, batch normalization layers, fully connected layers,

dropout layers, and a regression layer (Lee et al., 2015). In this study,

the size of the convolutional kernel was set to half the number of

input variables. The Rectified Linear Unit (ReLU) activation function

was used to accelerate the convergence speed of the model. During

the training process, the dropout layer was employed with a dropout

rate of 20% to enhance the generalization ability of the model and

prevent overfitting. The Stochastic Gradient Descent with

Momentum (SGDM) algorithm was utilized to optimize the

weights of the model, and the initial learning rate was set to 0.01.

LSTM algorithm was built upon the foundation of recurrent

neural networks, which introduces a gating mechanism to control the

path of information transmission (Hochreiter and Schmidhuber,

1997). It utilizes input gates, forget gates, and output gates to

dynamically adjust the weights of self-recurrent. In this way, when
FIGURE 3

The technical route of winter wheat LAI estimation at jointing stage using UAV multispectral images.
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the model parameters are fixed, the integration scale at different times

can change dynamically, so as to effectively address the challenges of

gradient explosion or disappearance of simple recursive neural

network. The main parameter settings were consistent with CNN.

2.4.2 Accuracy evaluation
The samples were divided into calibration and validation sets

using the sample set partitioning based on joint x-y distance (SPXY)

(Galvao et al., 2005), which is based on the Kennard-Stone

algorithm. This method considers both the feature variable (x)

and the target variable (y) when selecting the data, aiming to

determine a sub-feature space that maximally represents the

original data space. It achieves this by calculating the relative

Euclidean distance within the data space. By applying SPXY, the

selected samples are more uniformly distributed and reasonably

divided, providing a more comprehensive representation of

vegetation conditions within the study area. The use of this

approach may improve the repeatability and generalizability of

the study.

dxy(p, q) =
dx(p, q)

max
p,q∈½1,N�

dx(p, q)
+

dy(p, q)

max
p,q∈½1,N�

dy(p, q)
 , p; q ∈ ½1,N�ð Þ (5)

dx(p, q) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
J

j=1
xp(j)� xq(j)

� �2s
 , p; q ∈ ½1,N�ð Þ (6)

dy(p, q) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(yp� yq)

2
q

 , p; q ∈ ½1,N�ð Þ (7)

where dxy (p,q) represents the Euclidean distance of two spaces

considered, dx(p,q) represents the Euclidean distance of two

samples in x space (feature space), dy(p,q) represents the

Euclidean distance of two samples in y space (target space), max

dx(p,q) and max dy(p,q) denotes the maximum Euclidean distance

of p and q in x and y space respectively. N is the total number of

samples; J is the number of feature spaces. xp(j) and xq(j)

respectively represent the values of p and q samples on the j-th

feature. where yp and yq are the Euclidean distances of the two

samples in y space.

The calibration dataset for estimating winter wheat LAI values

was constructed using 70% of the sample data, while the remaining

30% served as the validation dataset for evaluation. The accuracy of

the model was assessed using various performance metrics,

including the Coefficient of Determination (R2), Root Mean

Square Error (RMSE), and Ratio of Performance to Standard

Deviate (RPD). For the evaluation indexes mentioned above, a

higher R2 value indicates a better prediction effect, while a smaller

RMSE indicates a more accurate model. In terms of RPD, it is

generally considered that RPD<1.4 indicates an unreliable model,

1.4< RPD< 2.0 suggests a moderate reliability, and model has a

higher level of reliability if RPD > 2.0. These metrics provide

quantitative measures to assess the accuracy and reliability of the

model in estimating the winter wheat LAI.
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R2 =
o
n

i=1
(xi − �x)2(yi − �y)2

o
n

i=1
(xi − �x)2o

n

i=1
(yi − �y)2

(8)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(yi − �y)2

n

vuuut
(9)

RPD =
SD(xi)
RMSE

(10)

where xi and �x represent the measured value and its mean value,

yi and �y are the predicted value and its mean value of each sample,

respectively. n indicates the number of samples in the calibration set

or validation set. SD is the standard deviation of the measured value

of the sample.
3 Results

3.1 Correlation between vegetation indices
and winter wheat LAI

The correlation between the selected 17 vegetation indices and

the measured LAI in the field was analyzed. The Pearson correlation

coefficient is shown in Figure 4. The results revealed that all

vegetation indices showed a correlation coefficient with LAI above

0.74, indicating a highly significant relationship (p<0.01). Among

the vegetation indices, Clre exhibited the strongest correlation with

LAI, with a correlation coefficient of 0.83, while CARI exhibited the

weakest correlation, with a correlation coefficient of 0.74. Based on

these findings, vegetation indices with correlation coefficients

greater than 0.80 were selected as independent variables. The

selected VI, ranked in descending order of correlation coefficient,

were Clre, RERDVI, MTCI, Clgreen, GOSAVI, MSAVI, EVI2 and

DVI, with corresponding correlation coefficients of 0.83, 0.83, 0.81,

0.81, 0.81, 0.80, 0.80, and 0.80, respectively.
3.2 Correlation between texture features
and winter wheat LAI

Based on the correlation analysis between the selected texture

features and LAI, it is evident from Figure 5 that more than half of

the texture features exhibited a relatively low correlation with LAI.

Only a small subset of texture features demonstrated a high

correlation with LAI. Specifically, the MEA in the green band,

near-infrared band, and red band exhibited correlation coefficients

of 0.72, 0.73, and 0.72, respectively, indicating a strong correlation

(P<0.01). However, for other texture features showing a highly

significant correlation, the absolute values of the correlation

coefficients generally ranged from 0.18 to 0.50. Given the
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FIGURE 4

Correlation coefficients between winter wheat LAI and vegetation indices (P<0.01).
FIGURE 5

Correlation coefficients between winter wheat LAI and texture features (* represents P ≤ 0.001).
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relatively weak correlation between texture features and LAI, their

utility for accurate LAI prediction was limited. Consequently, this

study employed some texture indices composed of texture features

from different bands, specifically NDTI, DTI and RTI.

The correlation analysis between the texture indices and LAI

showed that by combining the texture features, the overall

correlation between the texture features and LAI was significantly

improved. Figure 6 shows a high correlation between the

combination of MEA for each band and LAI. Similarly, texture

indices with a correlation coefficient greater than 0.80 were selected

as independent variables. The correlations, listed from highest to

lowest, were as follows: the ratio and normalized difference between

the MEA of the near-infrared and red edge bands (RTIMEA(N)-MEA

(RE), NDTIMEA(N)- MEA(RE)), the ratio and difference between the

MEA of the red edge and near-infrared bands (RTIMEA(RE)-MEA(N),
Frontiers in Plant Science 11
DTIMEA(N)-MEA(RE)), the ratio, difference and normalized value

between the MEA of the near-infrared and green bands (RTI MEA

(N)-MEA(G), DTIMEA(G)-MEA(N), NDTIMEA(G)-MEA(N)), the difference

between the MEA of the near-infrared and red bands (DTIMEA(N)-

MEA(R)), and the ratio between the MEA of the red edge and green

bands (RTIMEA(RE)-MEA(G)). The correlation coefficients for these TI

were 0.84, 0.83, -0.83, 0.83, -0.82, 0.82, -0.81, 0.80, and 0.80,

respectively. Figure 7 shows the correlation coefficients between

winter wheat LAI and input features, including VI, TI and PH.
3.3 Winter wheat LAI estimation

Using four combinations of VI, VITI, VIPH, and VITIPH as

input data, six regression algorithms including RF, XGBoost, SVM,
B CA

FIGURE 6

Correlation coefficients between winter wheat LAI and texture indices: (A) NDTI; (B) DTI; and (C) RTI. The abscissa and ordinate represent the correlation
coefficient between the texture index and LAI of the corresponding two texture features after normalization, difference and ratio operations.
FIGURE 7

Correlation coefficients between winter wheat LAI and input features (VI, TI, PH).
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BPNN, CNN, and LSTM were employed to estimate LAI for winter

wheat at jointing stage, and their accuracy was evaluated. The

results are shown in Figure 8.
3.3.1 LAI estimation based on different features

In the RF model, the accuracy of the LAI estimation model

constructed using VITI and VIPH input variables was improved

compared to the model constructed using VI (R2 = 0.74,

RMSE=0.99, RPD=1.49). The R2, RMSE and RPD of the input

VITI modeling set were 0.78, 0.93 and 1.60 respectively, and the R2,

RMSE and RPD of the validation set were 0.68, 1.15 and 1.40

respectively. For the VIPH modeling set, R2, RMSE, and RPD were

0.83, 0.82, and 1.81, respectively, while the validation set yielded R2

of 0.67, RMSE of 1.01, and RPD of 1.43. And the model constructed

using VITIPH demonstrated the highest accuracy (R2 = 0.85,

RMSE=0.78, RPD=1.89). The XGBoost and RF algorithms

exhibited similar model performance. Further analysis was

conducted using the XGBoost method, which showed high overall

accuracy. The calibration set constructed by inputting VITIPH

showed the best performance among all regression models,
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achieving the highest R2 (R2 = 0.88), the lowest RMSE

(RMSE=0.69), and an RPD greater than 2 (RPD=2.54).

Based on the SVM model, the models constructed using VI

(R2 = 0.69, RMSE=1.09, RPD=1.46) and VITI (R2 = 0.69,

RMSE=1.10, RPD=1.48) as input feature variables showed similar

results in terms of model accuracy evaluation metrics on the

calibration and validation sets. The model constructed by

introducing PH as the input variable (VIPH, VITIPH) showed better

effect than VI and VITI. The R2, RMSE and RPD of calibration set

constructed by VIPH were 0.82, 0.85 and 1.94 respectively, and the R2,

RMSE and RPD of validation set were 0.69, 0.93 and 1.40 respectively.

The effect of the model constructed by VITIPH was the best. The R2

and RPD of the modeling set increased to 0.83 and 2.13 respectively,

and the RMSE decreased to 0.81.

The models constructed using the BPNN, CNN, and LSTM

neural network algorithms also demonstrated positive predictive

performance in estimating winter wheat LAI (all RPD > 1.4). The

R2 of the calibration set were all above 0.64, and the R2 of the

validation set were all above 0.51. The RMSE ranged from 0.77 to

1.16. All the three models showed that the model based on the

combination of characteristic input variables of VITI and VIPH
B

A

FIGURE 8

Accuracy of winter wheat LAI estimation based on different algorithms and input variables. (A) calibration dataset; (B) validation dataset.
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performed better than the regression model with VI input, especially

the inclusion of the PH further enhanced the performance of the

model. In the calibration set, the BPNNmodel showed an increase in

R2 from 0.6818 to 0.8096, a decrease in RMSE from 1.10 to 0.85, and

an increase in RPD from 1.43 to 2.19. Similarly, the CNN model

exhibited an increase in R2 from 0.65 to 0.78 and a decrease in RMSE

from 1.16 to 0.92 in the calibration set. The modeling dataset of the

LSTMmodel also had an increase in R2 from 0.67 to 0.79, and in the

validation dataset, with an increase in R2 from 0.52 to 0.66.

Meanwhile, the best model performance was achieved when using

the VITIPH as input variables. In the BPNN model, the R2, RMSE

and RPD for the modeling dataset were 0.84, 0.79, and 2.30,

respectively. In the CNN model, the R2, RMSE, and RPD for the

modeling dataset were 0.83, 0.80 and 2.41, respectively. In the LSTM

model, the R2, RMSE, and RPD for the modeling dataset were 0.84,

0.77 and 2.39, respectively, while for the validation dataset, the R2,

RMSE and RPD were 0.62, 0.89 and 1.61, respectively.

Overall, the models constructed using different combinations of

features demonstrated better performance compared to those

relying solely on VI input, with the following order of accuracy:

VI<VITI<VIPH<VITIPH. This indicated that introducing other

feature variables can effectively improve the accuracy of the winter

wheat LAI estimation model. Notably, the incorporation of PH as a

variable significantly enhanced the model’s ability to estimate LAI.

As an essential plant parameter, PH exhibited a strong correlation

with LAI, making its inclusion in model construction crucial for

achieving more accurate LAI estimation.

3.3.2 Combining VI, TI, and PH to estimate LAI
using different algorithms

The scatter distribution of the measured and estimated LAI

values obtained from the VITIPH input, using six algorithms, is

presented in Figure 9. It was evident that the fitted distribution of

the winter wheat LAI estimation, constructed based on the XGBoost

algorithm, closely approximated a 1:1 relationship, indicating its

superior predictive capability. However, some issues remained, such

as overestimation of low values and underestimation of high values.

Notably, the SVM, RF, and XGBoost models exhibited robust

stability when compared to the BPNN, CNN, and LSTM neural

network models. This is primarily attributable to the superior

adaptability of SVM, RF, and XGBoost to small-sample datasets.

Even in situations with limited data volume, they can provide

relatively accurate estimates. Furthermore, these algorithms

exhibit robustness to outliers and noise within the data. This

resilience stems from the fundamental principles of these

algorithms; for instance, SVM demonstrates enhanced tolerance

to outliers through the concept of support vectors, while RF and

XGBoost effectively mitigate the sensitivity of individual decision

trees to noise by employing ensemble learning techniques.

Moreover, SVM, RF, and XGBoost models possess a relatively

parsimonious set of hyperparameters compared to neural network

models. These attributes contribute to the stability and reliability of

the models during the training process, thereby manifesting

superior performance in our research.
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Moreover, it can be observed from Figures 8, 9 that a consistent

trend occurred when comparing the LAI estimation using various

regression algorithms. Combined vegetation indices and texture

indices with plant height, the calibration set R2 of the six algorithms

was greater than 0.8, indicating that the accuracy of LAI estimation

by machine learning and deep learning regression algorithm

was high.
3.4 Winter wheat LAI Inversion map

The XGBoost model, which combined VI, TI, and PH, achieved

the most accurate prediction of winter wheat LAI. This model was

utilized to generate a spatial distribution map of winter wheat LAI

inversion in the study area, LAI values range from 0.96 to 8.86, as

depicted in Figure 10. By extrapolating LAI from the pixel scale to

the regional scale, remote sensing monitoring of winter wheat LAI

at a broader scale was achieved. This approach facilitated a more

comprehensive understanding of the growth status and spatial

distribution patterns of winter wheat in the region. The findings

will provide valuable information for real-time monitoring of wheat

growth and development, as well as the formulation of customized

fertilization prescriptions and other agricultural production

management and decision-making processes.

For example, the plant water use efficiency can be evaluated

through the further analysis of LAI inversion map.This aids in the

rational development of irrigation plans, ensuring that plants

receive adequate water and enhancing the overall water resource

utilization efficiency in agricultural fields. Simultaneously, the leaf

area of a plant is associated with nutrient absorption. Agricultural

practitioners can leverage LAI inversion maps to precisely

understand the nutrient requirements of plants, thereby

optimizing fertilizer plans and improving fertilizer efficiency.

Furthermore, agricultural decision-makers can utilize LAI

inversion maps for early detection of diseases and pests, enabling

the implementation of preventive or curative measures to mitigate

the adverse impact of plant diseases on yield. Additionally, LAI

inversion maps can be employed for preliminary estimations of

crop yields.
4 Discussion

The main objective of this study was to explore the potential of

using ML/DL to improve the accuracy of winter wheat LAI

estimation by combining VI, TI and PH based on UAV

multispectral image.

The study revealed a robust correlation between vegetation

indices and LAI for winter wheat during the jointing period. The

selected 17 vegetation indices (RVI, DVI, NDVI, GNDVI, EVI2,

Clgreen, MSR, MSAVI, GOSAVI, REOSAVI, RERDVI, Clre, CARI,

NGRDI, TVI, MTVI2, MTCI) in this study demonstrated

correlations exceeding 0.74 with LAI, with p-values lower than

0.01, signifying a highly significant relationship. Notably, indices
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like Clre, RERDVI, MTCI, and Clgreen, founded on the ratio of

near-infrared to visible light bands, provide insights into

chlorophyll content and photosynthetic activity. Given that LAI

of winter wheat characterizes the total area of the leaves, and the

chlorophyll content in the leaves is related to LAI in some cases.

During the jointing stage, winter wheat exhibits higher chlorophyll

content and more vigorous photosynthetic activity, fostering in a

strong correlation between these indices and LAI. Moreover, certain

indices depict alterations in vegetation structure and coverage, such

as NDVI, MSAVI, and EVI2. As winter wheat grows, the plant’s
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structure progressively develops, leading to an increase in leaf

number and density, alongside expanding vegetation coverage,

ultimately resulting in elevated LAI. These indices sensitively

capture variations in vegetation structure and coverage, thereby

demonstrating a significant positive correlation with LAI. Indices

such as EVI2 and DVI have been corrected for soil background and

atmospheric effects, effectively reducing interference with

vegetation reflectance and providing more precise information

regarding wheat LAI. Consequently, these indices exhibit a

significant correlation with LAI. The integration of these diverse
B

C D
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A

FIGURE 9

Scatter diagram of LAI estimation results of winter wheat with six algorithms using VITIPH as input variables. (A) RF-VITIPH; (B) XGBoost-VITIPH;
(C) SVM-VITIPH; (D) BPNN-VITIPH; (E) CNN –VITIPH; (F) LSTM -VITIPH. The calibration set and validation set are represented in red and green
point respectively.
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vegetation indices contributes to a comprehensive understanding of

LAI dynamics for winter wheat during the jointing period,

enhancing the accuracy of LAI estimation through remote

sensing approaches.

Nevertheless, the majority of texture features exhibited a weak

correlation with LAI. In order to address this limitation, combining

multiple texture features to create a new texture index can integrate

diverse and comprehensive texture information. This approach

mitigates the influence of soil, terrain, and shadow backgrounds

while accentuating pertinent features (Hang et al., 2021). It is worth

noting that the extraction of texture features is often susceptible to

image noise, variations in illumination, and other interfering

factors, which may lead to the instability of the results of a single

texture feature. By employing combination operations, random

noise within individual features can be eliminated or reduced,
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while uncertainties stemming from changes in illumination and

other factors can be minimized. This contributes to enhancing the

stability and reliability of the correlation between texture features

and LAI. The NDTI, DTI and RTI formed by the combination of

MEA of each band have high correlation with LAI. The mean value

of texture measurement includes the average value of the target and

background in the moving window, which can smooth the image

and minimize background interference (Wang et al., 2022b).

Additionally, green vegetation absorbs most visible light in the

red edge band, and in the near-infrared band, the diffuse reflection

of the canopy structure leads to a higher reflectance in the near-

infrared region (Yu et al., 2020). The difference, ratio, and

normalized difference between the near-infrared and red edge

bands can enhance the difference in light absorption and

reflection of vegetation, thus better reflecting the canopy structure
FIGURE 11

Scatter plot between LAI and PH.
FIGURE 10

Spatial distribution of winter wheat LAI estimation results based on optimal method in the study area.
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of green vegetation. This further reinforces the capability of texture

information in representing LAI, aligning with the findings of

Zhang (Zhang et al., 2022a). Through the comparison of six

regression algorithms, this study identified that integrating VI

and TI enhanced the performance of the LAI estimation model.

However, solely combining TI does not effectively address the

saturation issue of VI in high-density canopies. On the other hand,

incorporating plant structure information, such as PH, proves more

beneficial in addressing or improving this concern. Analysis of

Figure 11 reveals a clear linear positive correlation between PH and

LAI during the jointing stage of winter wheat, indicating that LAI

progressively increases with the growth of wheat plant height. This

is attributed to the fact that an increase in wheat plant height is

often accompanied by a corresponding increase in leaf area. The

expanded leaf area enables the plant to absorb and utilize more light

energy, which facilitates enhanced photosynthesis, increases

organic matter production, and promotes overall plant growth

and development. It is also used to form plant organs such as

roots, stems and ears, which reacts on the increase of plant height.

Yuan et al. (Yuan et al., 2013) have demonstrated a significant

positive correlation between vegetation canopy height and LAI.

Accordingly, this study incorporated the structural information of

PH extracted from UAV images in the construction of the winter

wheat LAI estimation model.Furthermore, it is worth noting that

this paper achieved a satisfactory level of accuracy in predicting

plant height based on UAV-derived data, with an R2 of 0.86 and an

RMSE of 2.07cm between predicted and measured values.

Studies have indicated that when constructing a LAI estimation

model with a single type of feature input as a variable, the model

constructed by texture feature is not as stable as the VI and is not

suitable for estimating crop LAI as an independent feature variable

(Zhang et al., 2021b). Therefore, this paper only considered the VI

as a single type of feature variable to construct the model.

Simultaneously, three types of multi-feature fusion combinations

were considered (VITI, VIPH, VITIPH). The results showed that,

compared to a single type of variable, the winter wheat LAI

estimation model constructed by combining VI and TI with PH

exhibited the highest accuracy. Furthermore, the combination of VI

and PH in the model construction exhibited significantly higher

accuracy compared to models based solely on VI or the

combination of VI and TI in estimating winter wheat LAI. This

highlighted the feasibility of integrating plant height and spectral

information in LAI estimation, leading to an improvement in model

accuracy and alleviating the issue of spectral saturation. For future

studies, it is recommended to consider the inclusion of other crop

vertical structural features during model construction, which may

further enhance LAI estimation accuracy and provide

comprehensive insights into the growth dynamics of winter wheat.

Analyzing the estimated results, it can be seen that all six

algorithms used in this paper achieved strong ability to estimate

winter wheat LAI. The RF model constructed using VITIPH

obtained the R2 was 0.85, RMSE was 0.78, and RPD was 1.90.

The R2, RMSE and RPD of calibration set constructed by SVM

using VITIPH were 0.83, 0.81 and 2.13 respectively. The models
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constructed using the BPNN, CNN, and LSTM neural network

algorithms also demonstrated positive predictive performance in

estimating winter wheat LAI (all RPD > 1.4). It is notable that the

model based on the XGBoost algorithm demonstrated the highest

performance among all the models tested, achieving the highest R2

(R2 = 0.88), the lowest RMSE (RMSE=0.69), and an RPD greater

than 2 (RPD=2.54). By comprehensively comparing the R2, RMSE

and RPD of the correction set and the verification set of the six

algorithms, it was found that the six evaluation indexes of the model

performed well as a whole, so XGBoost was selected as the most

optimal model. The advantage of this algorithm is that it is an

ensemble learning algorithm, which constructs a strong classifier by

combining multiple weak classifiers (decision trees) (Chen and

Guestrin, 2016). And ensemble learning enables the combination

of predictions from multiple models, reducing individual model

biases and variances, and improving the overall generalization

ability of the model. This feature allows XGBoost to effectively

capture the intricate relationship between LAI and the input

features, thereby enhancing the performance of the model.

Additionally, XGBoost employs an optimized second-order

Taylor expansion, enabling it to accurately estimate complex

nonlinear datasets and achieve superior results. Additionally, the

SPXY algorithm was used to screen the calibration samples and

validation samples before constructing the model in this paper,

which considered the distance between different feature variables

and the distance between target variables at the same time. By doing

so, the algorithm ensures a more even distribution and reduces the

differences between the calibration and validation sets, thus

improving the accuracy of the model. Researches have proved

that machine learning and deep learning algorithms combined

with remote sensing features had a good effect on LAI estimation

of winter wheat (Li et al., 2021; Zhang et al., 2021b). In this study,

the performance of the CNN and LSTM algorithms did not surpass

expectations, potentially attributed to the limited sample size. It

might have hindered the ability of deep learning to fully leverage its

advantages, resulting in a decline in model performance. Increasing

the sample size has various positive impacts on the performance of

deep learning models. Firstly, a larger sample size enhances the

model’s generalization ability, allowing it to better adapt to a wide

range of data distributions, thus exhibiting more robust

performance when faced with new, unseen data. Additionally, the

increase in sample size helps mitigate the risk of overfitting, making

the model’s performance on the test set more reliable.Ultimately, a

greater sample size provides more accurate model evaluations,

offering a more reliable basis for the objective assessment of

model performance. In general, the deep learning has advantages

in processing complex, high-dimensional and large-scale data, and

can automatically learn and extract features (Nevavuori et al., 2019).

However, due to its large demand for data and computing

resources, high requirements for interpretabil i ty and

comprehensibility, complex hyper-parameters selection and

optimization, and sensitivity to data quality and noise, it may be

limited in these aspects when processing some tasks, which is

relatively inferior to machine learning algorithms. Therefore,
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selecting an appropriate algorithm needs to comprehensively

consider the task requirements, data characteristics and

resource constraints.

This paper specifically focused on the estimation of winter

wheat LAI during the jointing stage. Whether the accuracy of

multiple features combination modeling is higher than that of

single type of VI modeling in the whole growth cycle remains to

be further studied. Additionally, it is important to examine whether

the XGBoost algorithm maintains the highest LAI estimation

accuracy across the entire growth period of winter wheat. After

that, the data collection of the whole growth cycle of crops should be

carried out to more comprehensively grasp the growth state of

winter wheat. At the same time, the universality and applicability of

the findings should be further studied in different regions.

The flight altitude of UAV is often closely linked to ground

resolution. The extraction of texture features at varying ground

resolutions has a discernible impact on the monitoring of Wheat

LAI. Estimating LAI typically necessitates the consideration of

vegetation texture information, encompassing leaf arrangement,

size, and morphology. When the flight altitude is set at 9 cm,

UAV sensors can capture finer details of ground vegetation, thus

providing a richer source of texture information. This, in turn,

contributes to a more precise characterization of vegetation

structure and distribution. Given that this study was conducted

with specific flight altitude and spatial resolution settings tailored

for agricultural fertilization decisions, future research may require

experiments involving different flight altitudes to validate the

methodologies and outcomes delineated in this paper.

The method utilized in this study may also be extended to

satellite data, such as WorldView-3 satellite, ZY-3 satellite, and

others. High spatial resolution satellite remote sensing offers rich

spectral and texture information, while plant height can be

extracted through multi-temporal stereo image pairs. However,

the critical growth and development period of crops is often

relatively short, emphasizing the necessity of obtaining relevant

satellite data within a specific time window. Challenges may arise

when the satellite’s coverage and revisit cycle fail to meet the data

requirements during this crucial period. Additionally, the quality of

satellite imagery becomes difficult to control due to adverse weather

conditions, such as clouds and rain, which can lead to the loss of

significant monitoring opportunities. In future research endeavors,

satellite data retains its potential for monitoring crop growth

parameters in lager areas, possibly surmounting the previously

mentioned challenges through techniques like image fusion.

According to this research, it was known that UAV multispectral

data played a pivotal role in estimating LAI. However, it is crucial to

recognize and address certain limitations associated with the

utilization of multispectral data. This constraint arises from the

inherently restricted spectral resolution of multispectral data,

wherein the UAV-mounted multispectral sensor captures

information within a limited set of pre-defined bands. This

limitation has the potential to hinder the precise characterization of

subtle variations in vegetation properties. In contrast, hyperspectral

data, characterized by capturing an extensive range of contiguous

narrow bands across the electromagnetic spectrum (Tao et al., 2020),

offer increased spectral resolution. The augmentation in resolution
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contributes to a more accurate characterization of vegetation

attributes, potentially enhancing the accuracy of LAI estimation.

Additionally, LiDAR data, capable of capturing three-dimensional

structural information of vegetation, serves as a complementary

dataset to spectral data (Luo et al., 2018). The enhancement of LAI

estimation is primarily achieved by considering the vertical structure

of vegetation. Therefore, it is worthwhile to consider the utilization of

hyperspectral or LiDAR data for vegetation LAI estimation in future

research endeavours.

In this study, winter wheat LAI monitoring based on UAV

multiple image provides the underlying data for wheat production.

The future work will apply this approach to different wheat growth

periods under various production management practices, and

explore the applicability in different regions and scales.
5 Conclusion

This study utilized UAVmultispectral images to extract spectral

and texture information, while incorporating plant height

information for LAI estimation. The comparative analysis was

conducted to assess the efficacy of four machine learning and two

deep learning regression algorithms in estimating the LAI of winter

wheat. The main conclusions were as follows:
1. At the jointing stage of winter wheat, the PH derived from

UAV images played an important role in LAI estimation,

which can improve the estimation accuracy of winter LAI.

2. The combination of texture features can significantly

improve the correlation between texture features and LAI,

especially the combination of the MEA of each band had

high correlation with wheat LAI. Comparing VI, VITI,

VIPH and VITIPH as input variables, it was found that the

ability of combining multiple features to estimate LAI of

winter wheat was better than the estimation model

constructed by only inputting VI, and the fusion of three

kinds of features involved in the construction of the

estimation model was the best.

3. The machine learning and deep learning algorithms were

shown promising results in accurately estimating winter

wheat LAI using UAV remote sensing data. The RF,

XGBoost and SVM model constructed using VITIPH

obtained the R2 values of 0.85, 0.88 and 0.83, while the

R2 of BPNN, CNN, and LSTM were 0.81, 0.78 and 0.79,

respectively. It is notable that the model based on the

XGBoost a lgor i thm demonstra ted the highes t

performance among all the models tested.
The research results demonstrate that UAV data and advanced

algorithms will provide technical support for the rapid and

nondestructive estimation of winter wheat LAI and help to

formulate variable rate fertilization prescription of agricultural

machinery. This research provides a valuable framework for

optimizing agricultural practices, underscoring their potential of

leveraging advanced technologies for precision agricultural and

making significant contributions to sustainable farming.
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