10,349 research outputs found

    Asteroseismic Theory of Rapidly Oscillating Ap Stars

    Get PDF
    This paper reviews some of the important advances made over the last decade concerning theory of roAp stars.Comment: 9 pages, 5 figure

    Estimating entanglement of unknown states

    Get PDF
    The experimental determination of entanglement is a major goal in the quantum information field. In general the knowledge of the state is required in order to quantify its entanglement. Here we express a lower bound to the robustness of entanglement of a state based only on the measurement of the energy observable and on the calculation of a separability energy. This allows the estimation of entanglement dismissing the knowledge of the state in question.Comment: 3 pages, 1 figure. Comments welcome. V2: references updated. Accepted version by Applied Physics Letter

    Tumour necrosis factor-alpha and interleukin-8 inhibit neutrophil migration in vitro and in vivo

    Get PDF
    Pretreatment of human neutrophils with recombinant tumour necrosis factor-alpha (rTNF-α) and/or interleukin-8 (rIL-8), but not with either transforming growth factor-beta, interleukin-6 or interferon-gamma, rendered these cells less responsive to FMLP, in microchemotaxis assays. This inhibitory effect was dose dependent and more powerful when neutrophils were pretreated with a mixture of both cytokines. Intravenous injection of human rIL-8 (hrIL-8) and/or murine rTNF-α (mrTNF-α) also significantly reduced in vivo neutrophil migration into peritoneal cavities of rats stimulated with carrageenan. These data suggest that the defect in neutrophil migration during septicaemia or endotoxaemia may be the result of the continuous release of IL-8 and TNF-α into the circulation. Thus, either the selective control or blockade of releasing of these cytokines as well as of its effects on neutrophils may be clinically useful in reestablishing the cell defence mechanisms

    Melting temperature of screened Wigner crystal on helium films by molecular dynamics

    Full text link
    Using molecular dynamics (MD) simulation, we have calculated the melting temperature of two-dimensional electron systems on 240 240\AA-500 500\AA helium films supported by substrates of dielectric constants ϵs=2.211.9 \epsilon_{s}=2.2-11.9 at areal densities nn varying from 3×109 3\times 10^{9} cm2^{-2} to 1.3×1010 1.3\times 10^{10} cm2^{-2}. Our results are in good agreement with the available theoretical and experimental results.Comment: 4 pages and 4 figure

    Theory of Stellar Oscillations

    Full text link
    In recent years, astronomers have witnessed major progresses in the field of stellar physics. This was made possible thanks to the combination of a solid theoretical understanding of the phenomena of stellar pulsations and the availability of a tremendous amount of exquisite space-based asteroseismic data. In this context, this chapter reviews the basic theory of stellar pulsations, considering small, adiabatic perturbations to a static, spherically symmetric equilibrium. It starts with a brief discussion of the solar oscillation spectrum, followed by the setting of the theoretical problem, including the presentation of the equations of hydrodynamics, their perturbation, and a discussion of the functional form of the solutions. Emphasis is put on the physical properties of the different types of modes, in particular acoustic (p-) and gravity (g-) modes and their propagation cavities. The surface (f-) mode solutions are also discussed. While not attempting to be comprehensive, it is hoped that the summary presented in this chapter addresses the most important theoretical aspects that are required for a solid start in stellar pulsations research.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    A thorough analysis of the short- and mid-term activity-related variations in the solar acoustic frequencies

    Get PDF
    The frequencies of the solar acoustic oscillations vary over the activity cycle. The variations in other activity proxies are found to be well correlated with the variations in the acoustic frequencies. However, each proxy has a slightly different time behaviour. Our goal is to characterize the differences between the time behaviour of the frequency shifts and of two other activity proxies, namely, the area covered by sunspots and the 10.7cm flux. We define a new observable that is particularly sensitive to the short-term frequency variations. We then compare the observable when computed from model frequency shifts and from observed frequency shifts obtained with the Global Oscillation Network Group (GONG) for cycle 23. Our analysis shows that on the shortest time-scales the variations in the frequency shifts seen in the GONG observations are strongly correlated with the variations in the area covered by sunspots. However, a significant loss of correlation is still found. We verify that the times when the frequency shifts and the sunspot area do not vary in a similar way tend to coincide with the times of the maxima of the quasi-biennial variations seen in the solar seismic data. A similar analysis of the relation between the 10.7cm flux and the frequency shifts reveals that the short-time variations in the frequency shifts follow even more closely those of the 10.7cm flux than those of the sunspot area. However, a loss of correlation between frequency shifts and 10.7cm flux variations is still found around the same times.Comment: 7 pages, 6 figures, accepted for publication in MNRA

    On the relation between activity-related frequency shifts and the sunspot distribution over the solar cycle 23

    Get PDF
    The activity-related variations in the solar acoustic frequencies have been known for 30 years. However, the importance of the different contributions is still not well established. With this in mind, we developed an empirical model to estimate the spot-induced frequency shifts, which takes into account the sunspot properties, such as area and latitude. The comparison between the model frequency shifts obtained from the daily sunspot records and those observed suggests that the contribution from a stochastic component to the total frequency shifts is about 30%. The remaining 70% is related to a global, long-term variation. We also propose a new observable to investigate the short- and mid-term variations of the frequency shifts, which is insensitive to the long-term variations contained in the data. On the shortest time scales the variations in the frequency shifts are strongly correlated with the variations in the total area covered by sunspots. However, a significant loss of correlation is still found, which cannot be fully explained by ignoring the invisible side of the Sun when accounting for the total sunspot area. We also verify that the times when the frequency shifts and the sunspot areas do not vary in a similar way tend to coincide with the times of the maximum amplitude of the quasi-biennial variations found in the seismic data.Comment: 4 pages, 2 figures, proceedings of the Joint TASC2 - KASC9 Workshop - SPACEINN - HELAS8 Conference "Seismology of the Sun and the Distant Stars 2016: Using Today's Successes to Prepare the Future". To be published by the EPJ Web of Conference

    Numerical investigation of the stability of stationary solutions in the theory of cathode spots in arcs in vacuum and ambient gas

    Get PDF
    The stability of stationary spots on cathodes of arcs in vacuum and ambient gas is investigated by means of the simulation of the temporal evolution of perturbations imposed over steady-state solutions. Two cases of loading conditions are considered, namely, spots operating at a fixed current (the case typical of small-scale experiments) and spots operating at a fixed voltage (the case typical of high-power circuit breakers). Results are reported on spots on large copper cathodes of vacuum arcs and on spots on tungsten cathodes of high-pressure argon arcs. It is shown, in particular, that if the ballast resistance in small-scale laboratory experiments with a high-current arc is insufficient, the potential consequence may be a thermal explosion of a spot, if the arc burns in vacuum, and massive melting of the cathode surface, if the arc burns in ambient gas. This conclusion conforms to trends observed in the experiment.info:eu-repo/semantics/publishedVersio
    corecore