1 research outputs found

    Bridging Effect of Carbon Nitride with More Negative Conduction Potential and Halogens Promotes the Liquid-Phase Oxidation of Aromatic C–H Bonds

    No full text
    The selective oxidation of benzyl C–H bonds of alkyl aromatic hydrocarbons under solvent-free conditions by using heterogeneous catalysis is a challenging task. In this work, we designed a carbon nitride photocatalyst with a high charge separation efficiency and a directed charge transfer path, which was doped with Ni and Br in the carbon nitride skeleton. Br was deposited directionally onto the electron-rich Ni surface traps to form a bond with Ni, which acted as a charge transfer bridge connecting CN and Br, resulting in a bridging effect. Photogenerated electrons were transferred from Ni target to Br, and electrons were aggregated to form a directional charge transfer path, thereby enhancing the photocatalytic performance of CN. The photocatalyst was utilized for the selective oxidation of ethylbenzene at room temperature, atmospheric pressure, and solvent-free conditions. Under batch conditions simulating solar irradiation, the conversion of ethylbenzene was 43.3% and the selectivity of the product acetophenone was up to 92.0%. With the continuous flow strategy, the conversion of ethylbenzene was increased to 52.4 and 48.1%, respectively, while the selectivity reached 92.7 and 91.0%, and the reaction time was reduced from 24 to 2.1 h. The catalyst was also found to be broadly applicable for the selective oxidation of C–H bonds in the benzyl position of alkyl aromatic hydrocarbons
    corecore