7 research outputs found

    JEC-QA: A Legal-Domain Question Answering Dataset

    Full text link
    We present JEC-QA, the largest question answering dataset in the legal domain, collected from the National Judicial Examination of China. The examination is a comprehensive evaluation of professional skills for legal practitioners. College students are required to pass the examination to be certified as a lawyer or a judge. The dataset is challenging for existing question answering methods, because both retrieving relevant materials and answering questions require the ability of logic reasoning. Due to the high demand of multiple reasoning abilities to answer legal questions, the state-of-the-art models can only achieve about 28% accuracy on JEC-QA, while skilled humans and unskilled humans can reach 81% and 64% accuracy respectively, which indicates a huge gap between humans and machines on this task. We will release JEC-QA and our baselines to help improve the reasoning ability of machine comprehension models. You can access the dataset from http://jecqa.thunlp.org/.Comment: 9 pages, 2 figures, 10 tables, accepted by AAAI202

    Iteratively Questioning and Answering for Interpretable Legal Judgment Prediction

    No full text
    Legal Judgment Prediction (LJP) aims to predict judgment results according to the facts of cases. In recent years, LJP has drawn increasing attention rapidly from both academia and the legal industry, as it can provide references for legal practitioners and is expected to promote judicial justice. However, the research to date usually suffers from the lack of interpretability, which may lead to ethical issues like inconsistent judgments or gender bias. In this paper, we present QAjudge, a model based on reinforcement learning to visualize the prediction process and give interpretable judgments. QAjudge follows two essential principles in legal systems across the world: Presumption of Innocence and Elemental Trial. During inference, a Question Net will select questions from the given set and an Answer Net will answer the question according to the fact description. Finally, a Predict Net will produce judgment results based on the answers. Reward functions are designed to minimize the number of questions asked. We conduct extensive experiments on several real-world datasets. Experimental results show that QAjudge can provide interpretable judgments while maintaining comparable performance with other state-of-the-art LJP models. The codes can be found from https://github.com/thunlp/QAjudge

    Exploring the Effect of Milk Fat on Fermented Milk Flavor Based on Gas Chromatography–Ion Mobility Spectrometry (GC-IMS) and Multivariate Statistical Analysis

    No full text
    Milk fat is a premium nutritional health product, yet there is a lack of high-fat dairy products for daily consumption in the current market. This study investigated the influence of different milk fat contents on the physicochemical and textural properties of fermented milk. The research revealed that an increase in milkfat content significantly improved the water-holding capacity, syneresis, color, hardness, springiness, gumminess, and chewiness of fermented milk, while showing minimal changes in pH and total titratable acidity. Response surface analysis indicated that fermented milk with 25% milk fat, 2.5% inoculum, a fermentation time of 16 h, and a fermentation temperature of 30 °C exhibited the highest overall acceptability. Using GC-IMS technology, 36 volatile compounds were identified, with an increase in milk fat content leading to elevated levels of ketone compounds, and 14 compounds were defined as key aroma compounds (ROAV > 1). Electronic nose distinguished samples with different milk fat contents. The results demonstrate that an increase in milk fat content enhances the physicochemical and flavor attributes of fermented milk. This work provides theoretical references for the production and development of high-fat fermented milk
    corecore