26 research outputs found

    Quantitative imaging of tissue sections using infrared scanning technology

    Get PDF
    Rona Barron - ORCID: 0000-0003-4512-9177 https://orcid.org/0000-0003-4512-9177Quantification of immunohistochemically (IHC) labelled tissue sections typically yields semi-quantitative results. Visualising infrared (IR) ‘tags’, with an appropriate scanner, provides an alternative system where the linear nature of the IR fluorophore emittance enables realistic quantitative fluorescence IHC (QFIHC). Importantly, this new technology enables entire tissue sections to be scanned, allowing accurate area and protein abundance measurements to be calculated from rapidly acquired images. Here, some of the potential benefits of using IR-based tissue imaging are examined, and the following are demonstrated. Firstly, image capture and analysis using IR-based scanning technology yields comparable area-based quantification to those obtained from a modern high-resolution digital slide scanner. Secondly, IR-based dual target visualisation and expression-based quantification is rapid and simple. Thirdly, IR-based relative protein abundance QIHC measurements are an accurate reflection of tissue sample protein abundance, as demonstrated by comparison with quantitative fluorescent Western blotting data. In summary, it is proposed that IR-based QFIHC provides an alternative method of rapid whole-tissue section low-resolution imaging for the production of reliable and accurate quantitative data.https://doi.org/10.1111/joa.12398228

    The screens culture: impact on ADHD

    Get PDF
    Children’s use of electronic media, including Internet and video gaming, has increased dramatically to an average in the general population of roughly 3 h per day. Some children cannot control their Internet use leading to increasing research on “internet addiction.” The objective of this article is to review the research on ADHD as a risk factor for Internet addiction and gaming, its complications, and what research and methodological questions remain to be addressed. The literature search was done in PubMed and Psychinfo, as well as by hand. Previous research has demonstrated rates of Internet addiction as high as 25% in the population and that it is addiction more than time of use that is best correlated with psychopathology. Various studies confirm that psychiatric disorders, and ADHD in particular, are associated with overuse, with severity of ADHD specifically correlated with the amount of use. ADHD children may be vulnerable since these games operate in brief segments that are not attention demanding. In addition, they offer immediate rewards with a strong incentive to increase the reward by trying the next level. The time spent on these games may also exacerbate ADHD symptoms, if not directly then through the loss of time spent on more developmentally challenging tasks. While this is a major issue for many parents, there is no empirical research on effective treatment. Internet and off-line gaming overuse and addiction are serious concerns for ADHD youth. Research is limited by the lack of measures for youth or parents, studies of children at risk, and studies of impact and treatment

    Investigation of lithium insertion/extraction induced morphology changes in micro-machined specimens of Li ion battery cathode material

    No full text
    It is commonly accepted that Li-ion battery life is limited by the process of degradation of electrode materials with repeated charging and discharging. During battery operation, lithium ions are shuttled between cathode and anode when the battery is being charged and discharged. One of the degradation mechanisms is related to the development of internal stresses in electrode particles due to repeated lithium insertion and removal. The stresses ultimately result in cracks in and fracture of particles. The current project targets the fundamental understanding through controlled experimental work of internal stress generation in and morphology change of electrode particles in Li-ion batteries. In situ experimental investigation of shape and volume changes during charging/discharging processes was performed on pre-fabricated micro samples of LiMn 2 O 4 and LiCoO 2 . Atomic force microscopy (AFM) was employed to study the intercalation induced morphology evolution similarly to previous work Acknowledgment This research at Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the U.S
    corecore