158 research outputs found

    Shape-induced force fields in optical trapping

    Get PDF
    Advances in optical tweezers, coupled with the proliferation of two-photon polymerization systems, mean that it is now becoming routine to fabricate and trap non-spherical particles. The shaping of both light beams and particles allows fine control over the flow of momentum from the optical to mechanical regimes. However, understanding and predicting the behaviour of such systems is highly complex in comparison with the traditional optically trapped microsphere. In this Article, we present a conceptually new and simple approach based on the nature of the optical force density. We illustrate the method through the design and fabrication of a shaped particle capable of acting as a passive force clamp, and we demonstrate its use as an optically trapped probe for imaging surface topography. Further applications of the design rules highlighted here may lead to new sensors for probing biomolecule mechanics, as well as to the development of optically actuated micromachines

    Biphoton focusing for two-photon excitation

    Full text link
    We study two-photon excitation using biphotons generated via the process of spontaneous parametric down-conversion in a nonlinear crystal. We show that the focusing of these biphotons yields an excitation distribution that is essentially the same as the distribution of one-photon excitation at the pump wavelength. We also demonstrate that biphoton excitation in the image region yields a distribution whose axial width is approximately that of the crystal thickness and whose transverse width is that of the pump at the input to the crystal.Comment: Accepted for publication in Physical Review

    Three-dimensional microfabrication using two-photon-activated chemistry

    Get PDF
    Photochemical reactions which can be activated by the simultaneous absorption of two photons provide a means for single-step fabrication of complex 3D microstructures. These types of structures are needed for a wide range of applications, including microfluidics, electrooptics, and micro-electromechanical systems. We have shown that chromophores can be engineered to have both large two-photon absorptivities as well as an efficient means for activating chemical processes, such as radical polymerization, subsequent to the photoexcitation. Chromophores designed following this strategy two-photon-activate the radical polymerization of acrylates at lower incident laser powers than conventional UV initiators. Efficient two-photon photopolymer resins based on these chromophores were used in the fabrication of complex microarchitectures, such as photonic bandgap structures and tapered waveguides. We have devised a strategy which allows this approach to be extended to other chemical systems

    Glass-ceramics: Their production from wastes-a review

    No full text

    Weekly updates of national living evidence-based guidelines: methods for the Australian living guidelines for care of people with COVID-19.

    No full text
    BACKGROUND AND OBJECTIVES: The Australian National COVID-19 Clinical Evidence Taskforce is a consortium of 31 Australian health professional organisations developing living, evidence-based guidelines for care of people with COVID-19, which are updated weekly. This article describes the methods used to develop and maintain the guidelines. METHODS: The guidelines use the GRADE methods and are designed to meet Australian NHMRC standards. Each week, new evidence is reviewed, current recommendations are revised, and new recommendations made. These are published in MAGIC and disseminated through traditional and social media. Relevant new questions to be addressed are continually sought from stakeholders and practitioners. For prioritized questions, the evidence is actively monitored and updated. Evidence surveillance combines horizon scans and targeted searches. An evidence team appraises and synthesizes evidence and prepares evidence-to-decision frameworks to inform development of recommendations. A guidelines leadership group oversees the development of recommendations by multidisciplinary guidelines panels and is advised by a consumer panel. RESULTS: The Taskforce formed in March 2020, and the first recommendations were published 2 weeks later. The guidelines have been revised and republished on a weekly basis for 24 weeks, and as of October 2020, contain over 90 treatment recommendations, suggesting that living methods are feasible in this context. CONCLUSIONS: The Australian guidelines for care of people with COVID-19 provide an example of the feasibility of living guidelines and an opportunity to test and improve living evidence methods
    corecore