13,124 research outputs found

    Study of low frequency hydromagnetic waves using ATS-1 data

    Get PDF
    Summaries are presented on the use of ATS-1 data to analyze low frequency oscillations of the earth's magnetic field and hydromagnetic wave polarization

    Study of low frequency hydromagnetic waves using ATS-1 data

    Get PDF
    The low-frequency oscillations observed at ATS-1 are the result of an attempt by the magnetospheric plasma to conserve its angular momentum as it convects through the magnetosphere

    Concept to standardize space vehicle piggyback experiment modules

    Get PDF
    Study investigates the use of spent launch vehicle stages and modules to support earth orbital operations and functions after successful completion of the primary mission. Emphasis is placed primarily on determination of those uses that afford the greatest utility with minimum possibility of degradation to the primary mission

    Electrostatic effects on contacts to carbon nanotube transistors

    Full text link
    We use numerical simulations to investigate the effect of electrostatics on the source and drain contacts of carbon nanotube field-effect transistors. We find that unscreened charge on the nanotube at the contact-channel interface leads to a potential barrier that can significantly hamper transport through the device. This effect is largest for intermediate gate voltages and for contacts near the ohmic-Schottky crossover, but can be mitigated with a reduction in the gate oxide thickness. These results help to elucidate the important role that contact geometry plays in the performance of carbon nanotube electronic devices

    Voyager measurements of the energy spectrum, charge composition, and long term temporal variations of the anomalous components in 1977-1982

    Get PDF
    The large collecting area and wide energy range of the cosmic ray experiment on Voyager 1 and 2 was used to examine the energy spectra, charge composition, and long term temporal variations of the anomalous components in 1977-1982. Individual energy spectra are obtained for 17 separate quiet time periods during the time interval. The composite spectra of anomalous He, N, O, and Ne are obtained to a new level of precision. This includes the spectral shape and the relative abundance. Essentially, the spectral shape of N, O, and Ne appear to be similar. The ratios of anomalous N and Ne to O are found to be different from both the solar cosmic ray and galactic cosmic ray source composition. Some evidence is found for the enhancement of Ar as well. In the case of elements such as C, Mg, S, and Fe it is difficult to separate a possible lower intensity anomalous component from a quasi-steady interplanetary component that appears to be present at the lowest energies. The long term temporal variations of the anomalous He and O components were studied from 1977-82, a period from minimum to maximum in the modulation cycle. The tracking between these anomalous component intensities and the integral intensity of 75 MeV protons is striking; however, the intensity decrease of the anomalous components is much greater

    Temporal variations of the anomalous oxygen component

    Get PDF
    Data from the cosmic ray experiment on Voyagers 1 and 2 was used to examine anomalous oxygen in the time period from launch in 1977 to the end of 1981. Several time periods were found where large periodic (typically 26 day) temporal variations of the oxygen intensity between approximately 5 - 15 MeV/nuc are present. Variations in intensity by up to a factor of 10 are observed during these periods. Several characteristics of these variations indicate that they are not higher energy extensions of the low energy particle (approximately 1 MeV/nuc) increases found in many corotating interaction regions (CIR's). Many of these periodic temporal variations are correlated with similar, but much smaller, recurrent variations in the 75 MeV proton rate. Voyager 1 and Voyager 2 counting rates were compared to estimate the local radial gradient for both the protons and the oxygen. The proton gradients during periods of both maximum and minumum fluxes are consistent with the overall positive radial gradients reported by others from Pioneer and near-Earth observations, supporting the view that these variations are due to local modulation of a source outside the radial range of project measurements. In contrast, the oxygen gradients during periods of maximum proton flux differ in sign from those during minimum proton fluxes, suggesting that the origin of the oxygen variations is different from that of the protons
    corecore