11,916 research outputs found

    Concept to standardize space vehicle piggyback experiment modules

    Get PDF
    Study investigates the use of spent launch vehicle stages and modules to support earth orbital operations and functions after successful completion of the primary mission. Emphasis is placed primarily on determination of those uses that afford the greatest utility with minimum possibility of degradation to the primary mission

    Voyager measurements of the energy spectrum, charge composition, and long term temporal variations of the anomalous components in 1977-1982

    Get PDF
    The large collecting area and wide energy range of the cosmic ray experiment on Voyager 1 and 2 was used to examine the energy spectra, charge composition, and long term temporal variations of the anomalous components in 1977-1982. Individual energy spectra are obtained for 17 separate quiet time periods during the time interval. The composite spectra of anomalous He, N, O, and Ne are obtained to a new level of precision. This includes the spectral shape and the relative abundance. Essentially, the spectral shape of N, O, and Ne appear to be similar. The ratios of anomalous N and Ne to O are found to be different from both the solar cosmic ray and galactic cosmic ray source composition. Some evidence is found for the enhancement of Ar as well. In the case of elements such as C, Mg, S, and Fe it is difficult to separate a possible lower intensity anomalous component from a quasi-steady interplanetary component that appears to be present at the lowest energies. The long term temporal variations of the anomalous He and O components were studied from 1977-82, a period from minimum to maximum in the modulation cycle. The tracking between these anomalous component intensities and the integral intensity of 75 MeV protons is striking; however, the intensity decrease of the anomalous components is much greater

    Temporal variations of the anomalous oxygen component

    Get PDF
    Data from the cosmic ray experiment on Voyagers 1 and 2 was used to examine anomalous oxygen in the time period from launch in 1977 to the end of 1981. Several time periods were found where large periodic (typically 26 day) temporal variations of the oxygen intensity between approximately 5 - 15 MeV/nuc are present. Variations in intensity by up to a factor of 10 are observed during these periods. Several characteristics of these variations indicate that they are not higher energy extensions of the low energy particle (approximately 1 MeV/nuc) increases found in many corotating interaction regions (CIR's). Many of these periodic temporal variations are correlated with similar, but much smaller, recurrent variations in the 75 MeV proton rate. Voyager 1 and Voyager 2 counting rates were compared to estimate the local radial gradient for both the protons and the oxygen. The proton gradients during periods of both maximum and minumum fluxes are consistent with the overall positive radial gradients reported by others from Pioneer and near-Earth observations, supporting the view that these variations are due to local modulation of a source outside the radial range of project measurements. In contrast, the oxygen gradients during periods of maximum proton flux differ in sign from those during minimum proton fluxes, suggesting that the origin of the oxygen variations is different from that of the protons

    Analytical model of non-Markovian decoherence in donor-based charge quantum bits

    Full text link
    We develop an analytical model for describing the dynamics of a donor-based charge quantum bit (qubit). As a result, the quantum decoherence of the qubit is analytically obtained and shown to reveal non-Markovian features: The decoherence rate varies with time and even attains negative values, generating a non-exponential decay of the electronic coherence and a later recoherence. The resulting coherence time is inversely proportional to the temperature, thus leading to low decoherence below a material dependent characteristic temperature.Comment: 19 pages, 3 figure

    The Intensities of Cosmic Ray H and He Nuclei at ~250 MeV/nuc Measured by Voyagers 1 and 2 - Using these Intensities to Determine the Solar Modulation Parameter in the Inner Heliosphere and the Heliosheath Over a 40 Year Time Period

    Get PDF
    We have determined the solar modulation potential, phi, vs. time that is observed at Voyager 1 and 2 from measurements of the H and He nuclei intensities at a common energy of 250 MeVnuc. The H nuclei have a rigidity 0.7 GV, the He nuclei 1.4 GV. These measurements cover a 40 year time period, which includes almost 4 cycles of solar 11 year sunspot variations, throughout the inner heliosphere out to the HTS at distances of 95 AU and 85 AU, respectively at V1 and V2, and then beyond in the heliosheath. Inside the HTS the modulation potential vs. time curves at V1 and V2 show a very similar temporal structure to those observed at the Earth. During a later period of maximum solar modulation from 2000.0 to 2005.0 when V1 and V2 are in the outer heliosphere between 60-94 AU, the main temporal features of the modulation potential curves at all 3 locations match up with appropriate time delays at V1 and V2 if it is assumed that spatially coherent structures are moving outward past V1 and V2, with outward speeds of up to 700 Kms negative 1. After 2004.0 V1 and V2 are at latitudes of positive 35 and negative 30 respectively, placing lower limits on the latitude extent of these structures. Beyond the HTS in the heliosheath the modulation potential slowly decreases at both spacecraft with only a weak evidence of the unusual modulation minimum observed at the Earth in 2009, for example. A sudden decrease of the modulation potential 50 MV for both H and He nuclei occurs at V1 just before the heliopause crossing at about 122 AU. This decrease has not yet been observed at V2, which is now at 113 AU and still observing a modulation potential 60 MV.Comment: 28 pages, 9 Figure

    Population structure, long-term connectivity, and effective size of mutton snapper (Lutjanus analis) in the Caribbean Sea and Florida Keys

    Get PDF
    Genetic structure and average long-term connectivity and effective size of mutton snapper (Lutjanus analis) sampled from offshore localities in the U.S. Caribbean and the Florida Keys were assessed by using nuclear-encoded microsatellites and a fragment of mitochondrial DNA. No significant differences in allele, genotype (microsatellites), or haplotype (mtDNA) distributions were detected; tests of selective neutrality (mtDNA) were nonsignificant after Bonferroni correction. Heuristic estimates of average long-term rate of migration (proportion of migrant individuals/generation) between geographically adjacent localities varied from 0.0033 to 0.0054, indicating that local subpopulations could respond independently of environmental perturbations. Estimates of average longterm effective population sizes varied from 341 to 1066 and differed significantly among several of the localities. These results indicate that over time larval drift and interregional adult movement may not be sufficient to maintain population sustainability across the region and that there may be different demographic stocks at some of the localities studied. The estimate of long-term effective population size at the locality offshore of St. Croix was below the minimum threshold size considered necessary to maintain the equilibrium between the loss of adaptive genetic variance from genetic drift and its replacement by mutation. Genetic variability in mutton snapper likely is maintained at the intraregional level by aggregate spawning and random mating of local populations. This feature is perhaps ironic in that aggregate spawning also renders mutton snapper especially vulnerable to overexploitation

    Solar modulation and interplanetary gradients of the galactic electrons flux, 1977 - 1984

    Get PDF
    The flux of electrons with energy from approx. 10 to 180 MeV measured with the electron telescope on the Voyager 1 and 2 spacecraft in the heliocentric radial range 1 - 22 AU between 1977 and 1984 is reported. Jovian electrons were clearly observable between 1978 and 1983 (radial range 2 - 12 AU) at energies below approx. 50 MeV. Above approx. 50 MeV the electron intensity exhibited temporal variations generally related to the 11 year modulation of protons 75 MeV. The overall magnitude of the electron intensity changes between the maximum intensity observed in 1977 and the minimum intensity in 1981 was a factor approx. 2, also comparable to that observed for 75 MeV protons. By early 1985 the electron intensity had apparently recovered to the level observed in 1977 whereas the proton intensity was still about 20% lower. A detailed interpretation of these electron variations in all energy channels depends on an accurate subtraction of background induced by energetic protons of a few 100 MeV. This subtraction is facilitated by calibration results at several energies

    The Energy Spectrum of Jovian Electrons in Interplanetary Space

    Get PDF
    The energy spectrum of electrons with energies approx 10 to approx 180 MeV measured with the electron telescope on the Voyager 1 and 2 spacecraft in interplanetary space from 1978 to 1983 is studied. The kinetic energy of electrons is determined by double dE/dx measurements from the first two detectors (D sub 1, D sub 2) of a stack of eight solid state detectors and by the range of particle penetration into the remaining six detectors (D sub 3 to D sub 8) which are interleaved with tungsten absorbers. From 1978 to 1983 (radial range approximately 2 to a pproximately 12 AU) electrons of Jovian origin were clearly observable for electrons stopping in D(sub 3(E approximately greater than 4 MeV)) and in D(sub 4 (E approximately greater than 8 MeV)). For electrons stopping in D(sub 5(E approximately greather than 12 MeV)), the jovian flux dominated the galactic electron flux for a period of approximately one year near the encounter with Jupiter. Jovian electrons were also observed in D(sub 6(E approximately greater than 21 MeV)) but not in D(sub 7(E approximately greater than 28 MeV)). A detailed interpretation of the electron variations in all energy channels depends on an accurate subtraction of background induced by energetic protons of a few 100 MeV. This substraction is facilitated by laboratory calibration results at several energies. Further results on the differential energy spectrum of Jovian electrons and limits on the maximum detected energies will be reported
    • …
    corecore