5,605 research outputs found

    The challenges of risk management in diversified financial companies

    Get PDF
    In recent years, financial institutions and their supervisors have placed increased emphasis on the importance of measuring and managing risk on a firmwide basis—a coordinated process referred to as consolidated risk management. Although the benefits of this type of risk management are widely acknowledged, few if any financial firms have fully developed systems in place today, suggesting that significant obstacles have led them to manage risk in a more segmented fashion. In this article, the authors examine the economic rationale behind consolidated risk management. Their goal is to detail some of the key issues that supervisors and practitioners have confronted in assessing and developing consolidated risk management systems. In doing so, the authors clarify why implementing consolidated risk management involves significant conceptual and practical difficulties. They also suggest areas in which additional research could help resolve some of these difficulties.Risk management ; Financial institutions ; Bank supervision

    Integrated ultrasonic particle positioning and low excitation light fluorescence imaging

    Get PDF
    A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup

    Long tails on thermonuclear X-ray bursts from neutron stars: a signature of inward heating?

    Get PDF
    We report the discovery of one-hour long tails on the few-minutes long X-ray bursts from the `clocked burster' GS 1826-24. We propose that the tails are due to enduring thermal radiation from the neutron star envelope. The enduring emission can be explained by cooling of deeper NS layers which were heated up through inward conduction of heat produced in the thermonuclear shell flash responsible for the burst. Similar, though somewhat shorter, tails are seen in bursts from EXO 0748-676 and 4U 1728-34. Only a small amount of cooling is detected in all these tails. This is either due to compton up scattering of the tail photons or, more likely, to a NS that is already fairly hot due to other, stable, nuclear processes.Comment: Accepted for publication in Astronomy & Astrophysics, 12 pages, 14 figure

    Novel thermal management of power electronic devices: high power high frequency planar gunn diodes

    Get PDF
    Thermal management of next generation of semiconductor devices is becoming more challenging, as the device power increases and device dimensions decrease. The work is addressing novel thermal measurement and management for planar heterostructure Gunn diodes, which will be of strategic importance for UK technology and industry

    The Connection Between Low-Mass X-ray Binaries and (Millisecond) Pulsars: A Binary Evolution Perspective

    Full text link
    I review the evolutionary connection between low-mass X-ray binaries (LMXBs) and pulsars with binary companions (bPSRs) from a stellar binary evolution perspective. I focus on the evolution of stellar binaries with end-states consisting of a pulsar with a low-mass (<1.0 solar mass) companion, starting at the point the companion's progenitor first initiates mass transfer onto the neutron star. Whether this mass transfer is stable and the physics driving ongoing mass transfer partitions the phase space of the companions's initial mass and initial orbital period into five regions. The qualitative nature of the mass-transfer process and the binary's final end-state differ between systems in each region; four of these regions each produce a particular class of LMXBs. I compare the theoretical expectations to the populations of galactic field LMXBs with companion-mass constraints and field bPSRs. I show that the population of accreting millisecond pulsars are all identified with only two of the four LMXB classes and that these systems do not have readily identifiable progeny in the bPSR population. I discuss which sub-populations of bPSRs can be explained by binary evolution theory and those that currently are not. Finally I discuss some outstanding questions in this field.Comment: 9 pages, 5 figures, to appear in the proceedings of the 40 Years of Pulsars conference held at McGill University in August 200

    Boosting clinical performance: The impact of enhanced final year placements.

    Get PDF
    BACKGROUND: This study follows on from a study that investigated how to develop effective final year medical student assistantship placements, using multidisciplinary clinical teams in planning and delivery. AIMS: This study assessed the effects on objective structured clinical examination (OSCE) performance of the in-course enhanced "super-assistantship" placement introduced to a randomly selected sample of 2013-14 final year medical students at Leeds medical school. METHODS: Quantitative data analysis was used to compare the global grades of OSCE stations between students who undertook this placement against those who did not. RESULTS: There was a small overall improvement in the "super-assistantship" student scores across the whole assessment (effect size = 0.085). "Pre-op Capacity", "Admissions Prescribing" and "Hip Pain" stations had small-medium effect sizes (0.226, 0.215, and 0.214) in favor of the intervention group. Other stations had small effect sizes (0.107-0.191), mostly in favor of the intervention group. CONCLUSIONS: The "super-assistantship" experience characterized by increasing student responsibility on placement can help to improve competence and confidence in clinical decision-making "in a simulated environment". The clinical environment and multidisciplinary team must be ready and supported to provide these opportunities effectively. Further in-course opportunities for increasing final year student responsibility should be developed

    A change in the quiescent X-ray spectrum of the neutron star low-mass X-ray binary MXB 1659-29

    Get PDF
    The quasi-persistent neutron star low-mass X-ray binary MXB 1659-29 went into quiescence in 2001, and we have followed its quiescent X-ray evolution since. Observations over the first 4 years showed a rapid drop in flux and temperature of the neutron star atmosphere, interpreted as cooling of the neutron star crust which had been heated during the 2.5 year outburst. However, observations taken approximately 1400 and 2400 days into quiescence were consistent with each other, suggesting the crust had reached thermal equilibrium with the core. Here we present a new Chandra observation of MXB 1659-29 taken 11 years into quiescence and 4 years since the last Chandra observation. This new observation shows an unexpected factor of ~3 drop in count rate and change in spectral shape since the last observation, which cannot be explained simply by continued cooling. Two possible scenarios are that either the neutron star temperature has remained unchanged and there has been an increase in the column density, or, alternatively the neutron star temperature has dropped precipitously and the spectrum is now dominated by a power-law component. The first scenario may be possible given that MXB 1659-29 is a near edge-on system, and an increase in column density could be due to build-up of material in, and a thickening of, a truncated accretion disk during quiescence. But, a large change in disk height may not be plausible if standard accretion disk theory holds during quiescence. Alternatively, the disk may be precessing, leading to a higher column density during this latest observation.Comment: 6 pages, 4 figures, accepted for publication in Ap

    Superbursts at near-Eddington mass accretion rates

    Full text link
    Models for superbursts from neutron stars involving carbon shell flashes predict that the mass accretion rate should be anywhere in excess of one tenth of the Eddington limit. Yet, superbursts have so far only been detected in systems for which the accretion rate is limited between 0.1 and 0.25 times that limit. The question arises whether this is a selection effect or an intrinsic property. Therefore, we have undertaken a systematic study of data from the BeppoSAX Wide Field Cameras on the luminous source GX 17+2, comprising 10 Msec of effective observing time on superbursts. GX 17+2 contains a neutron star with regular Type-I X-ray bursts and accretes matter within a few tens of percents of the Eddington limit. We find four hours-long flares which reasonably match superburst characteristics. Two show a sudden rise (i.e., faster than 10 s), and two show a smooth decay combined with spectral softening. The implied superburst recurrence time, carbon ignition column and quenching time for ordinary bursts are close to the predicted values. However, the flare decay time, fluence and the implied energy production of (2-4) x 10^17 erg/g are larger than expected from current theory.Comment: Accepted for publication in Astronomy & Astrophysic
    corecore