28 research outputs found

    Understanding unequal ageing: towards a synthesis of intersectionality and life course analyses

    Get PDF
    Intersectionality has received an increasing amount of attention in health inequalities research in recent years. It suggests that treating social characteristics separately—mainly age, gender, ethnicity, and socio-economic position—does not match the reality that people simultaneously embody multiple characteristics and are therefore potentially subject to multiple forms of discrimination. Yet the intersectionality literature has paid very little attention to the nature of ageing or the life course, and gerontology has rarely incorporated insights from intersectionality. In this paper, we aim to illustrate how intersectionality might be synthesised with a life course perspective to deliver novel insights into unequal ageing, especially with respect to health. First we provide an overview of how intersectionality can be used in research on inequality, focusing on intersectional subgroups, discrimination, categorisation, and individual heterogeneity. We cover two key approaches—the use of interaction terms in conventional models and multilevel models which are particularly focussed on granular subgroup differences. In advancing a conceptual dialogue with the life course perspective, we discuss the concepts of roles, life stages, transitions, age/cohort, cumulative disadvantage/advantage, and trajectories. We conclude that the synergies between intersectionality and the life course hold exciting opportunities to bring new insights to unequal ageing and its attendant health inequalities

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    In the Old Testament Authentic?

    No full text

    In-situ Monitoring of Solid Oxide Electrolysis Cells

    No full text
    High temperature co-electrolysis of steam and carbon dioxide using a solid oxide cell (SOC) has been shown to be an efficient route to produce syngas (CO + H2), which can then be converted to synthetic fuel. Optimization of co-electrolysis requires detailed understanding of the complex reactions, transport processes and degradation mechanisms occurring in the SOC during operation. Thermal imaging, Raman spectroscopy and Diffuse Reflectance Infrared Fourier Transform Spectroscopy are being developed to probe in-situ both the reactions occurring during operation and any associated changes within the structure of the electrodes and electrolyte. Here we discuss the challenges in designing experimental apparatus suitable for high temperature operation with optical spectroscopic access to the areas of the SOC that are of interest. In particular, issues with sealing, temperature gradients, signal strength and cell configuration are discussed and final designs are presented. Preliminary results obtained during co-electrolysis operation are also presented.</jats:p
    corecore