12 research outputs found

    Toxicity Evaluation of a Novel Magnetic Resonance Imaging Marker CoCl2-N-Acetylcysteine in Rats

    Get PDF
    C4 (cobalt dichloride-N-acetylcysteine [1% CoCl 2 :2% NAC]) is a novel magnetic resonance imaging contrast marker that facilitates visualization of implanted radioactive seeds in cancer brachytherapy. We evaluated the toxicity of C4. Rats were assigned to control (0% CoCl 2 :NAC), low-dose (0.1% CoCl 2 :2% NAC), reference-dose (C4), and high-dose (10% CoCl 2 :2% NAC) groups. Agent was injected into the left quadriceps femoris muscle of the rats. Endpoints were organ and body weights, hematology, and serum chemistry and histopathologic changes of tissues at 48 hours and 28 and 63 days after dosing. Student\u27s t tests were used. No abnormalities in clinical signs, terminal body and organ weights, or hematologic and serum chemistry were noted, and no gross or histopathologic lesions of systemic tissue toxicity were found in any treatment group at any time point studied. At the site of injection, concentration-dependent acute responses were observed in all treatment groups at 48 hours after dosing and were recovered by 28 days. No myofiber degeneration or necrosis was observed at 28 or 63 days in any group. In conclusion, a single intramuscular dose of C4 produced no acute or chronic systemic toxicity or inflammation in rats, suggesting that C4 may be toxicologically safe for clinical use in cancer brachytherapy

    Toxicity Evaluation of a Novel Magnetic Resonance Imaging Marker, CoCl2-N-Acetylcysteine, in Rats

    Get PDF
    C4 (cobalt dichloride-N-acetylcysteine [1% CoCl2:2% NAC]) is a novel magnetic resonance imaging contrast marker that facilitates visualization of implanted radioactive seeds in cancer brachytherapy. We evaluated the toxicity of C4. Rats were assigned to control (0% CoCl2:NAC), low-dose (0.1% CoCl2:2% NAC), reference-dose (C4), and high-dose (10% CoCl2:2% NAC) groups. Agent was injected into the left quadriceps femoris muscle of the rats. Endpoints were organ and body weights, hematology, and serum chemistry and histopathologic changes of tissues at 48 hours and 28 and 63 days after dosing. Student’s t tests were used. No abnormalities in clinical signs, terminal body and organ weights, or hematologic and serum chemistry were noted, and no gross or histopathologic lesions of systemic tissue toxicity were found in any treatment group at any time point studied. At the site of injection, concentration-dependent acute responses were observed in all treatment groups at 48 hours after dosing and were recovered by 28 days. No myofiber degeneration or necrosis was observed at 28 or 63 days in any group. In conclusion, a single intramuscular dose of C4 produced no acute or chronic systemic toxicity or inflammation in rats, suggesting that C4 may be toxicologically safe for clinical use in cancer brachytherapy

    A Phase I/II Study of the mTOR Inhibitor Everolimus in Combination with HyperCVAD Chemotherapy in Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia

    No full text
    PURPOSE: Previous studies suggest a potential therapeutic role for mTOR inhibition in lymphoid malignancies. This single-center phase I/II study was designed to test the safety and efficacy of the mTOR inhibitor everolimus in combination with HyperCVAD chemotherapy in relapsed/refractory acute lymphoblastic leukemia. EXPERIMENTAL DESIGN: Twenty-four patients were treated; 15 received everolimus 5 mg/day and 9 received 10 mg/day with HyperCVAD. RESULTS: The median age of patients was 25 years (range, 11-64) and median number of prior treatments was 2 (range, 1-7). Grade 3 mucositis was the dose-limiting toxicity and the maximum tolerated everolimus dose was 5 mg/day. Responses included complete remission (CR) in 6 patients (25%), CR without platelet recovery (CRp) in 1 (4%), and CR without recovery of counts (CRi) in 1 (4%), for an overall response rate of 33%. Additionally, partial response (PR) was noted in 2 patients (8%). Seven of 11 patients treated in first salvage achieved CR/CRp (64%). The median OS was 29 weeks for patients in first salvage versus 15 weeks for patients in second salvage and beyond (P≤0.001). A response was noted in 5 of 10 (50%) heavily pretreated T-ALL patients (median of 4 prior salvage regimens). Everolimus significantly inhibited phosphorylation of S6RP, but this did not correlate with response. No significant decreases in p4EBP1 and pAkt levels were noted. Responders had higher everolimus dose-adjusted area under the curve (P=0.025) and lower clearance (P=0.025) than non-responders. CONCLUSIONS: The combination of HyperCVAD and everolimus is well tolerated and moderately effective in relapsed ALL, specifically T-ALL

    SU2C Phase Ib Study of Paclitaxel and MK-2206 in Advanced Solid Tumors and Metastatic Breast Cancer

    No full text
    BACKGROUND: There is preclinical synergism between taxanes and MK-2206. We aim to determine the maximum tolerated dose, safety, and activity of combining MK-2206 and paclitaxel in metastatic cancer. METHODS: Patients received weekly doses of paclitaxel at 80mg/m2 on day 1, followed by MK-2206 orally on day 2 escalated at 90mg, 135mg, and 200mg. Treatment continued until progression, excessive toxicity, or patient request. Blood and tissue were collected for pharmacokinetic and pharmacodynamics markers. A cycle consisted of three weeks of therapy. Dose-limiting toxicity (DLT) was defined as unacceptable toxicity during the first cycle. All statistical tests were two-sided. RESULTS: Twenty-two patients were treated, nine in dose escalation and 13 in dose expansion. Median age was 55 years. Median number of cycles was four. Dose escalation was completed with no DLT. CTCAE Grade 3 or higher adverse events were fatigue (n = 2), rash (n = 2), hyperglycemia (n = 1), and neutropenia (n = 7). Four patients in the expansion phase required MK-2206 dose reduction. Phase II recommended dose was established as paclitaxel 80mg/m2 weekly on day 1, and MK-2206 135mg weekly on day 2. Paclitaxel systemic exposure was similar in the presence or absence of MK-2206. Plasma MK-2206 concentrations were similar to data from previous phase I monotherapy. There was a statistically significant decrease in expression of pAKT S473 (P = .01) and pAKT T308 (P = .002) after therapy. PI3K/AKT/mTOR downregulation in tumor tissues and circulating markers did not correlate with tumor response or clinical benefit. There were five objective responses, and nine patients had stable disease. CONCLUSION: MK-2206 was well tolerated with paclitaxel. Preliminary antitumor activity was documented
    corecore