43 research outputs found

    Altered ureteric branching morphogenesis and nephron endowment in offspring of diabetic and insulin-treated pregnancy

    Get PDF
    <div><p>There is strong evidence from human and animal models that exposure to maternal hyperglycemia during <i>in utero</i> development can detrimentally affect fetal kidney development. Notwithstanding this knowledge, the precise effects of diabetic pregnancy on the key processes of kidney development are unclear due to a paucity of studies and limitations in previously used methodologies. The purpose of the present study was to elucidate the effects of hyperglycemia on ureteric branching morphogenesis and nephrogenesis using unbiased techniques. Diabetes was induced in pregnant C57Bl/6J mice using multiple doses of streptozotocin (STZ) on embryonic days (E) 6.5-8.5. Branching morphogenesis was quantified <i>ex vivo</i> using Optical Projection Tomography, and nephrons were counted using unbiased stereology. Maternal hyperglycemia was recognised from E12.5. At E14.5, offspring of diabetic mice demonstrated fetal growth restriction and a marked deficit in ureteric tip number (control 283.7±23.3 vs. STZ 153.2±24.6, mean±SEM, <i>p</i>&lt;0.01) and ureteric tree length (control 33.1±2.6 mm vs. STZ 17.6±2.7 mm, <i>p</i> = 0.001) vs. controls. At E18.5, fetal growth restriction was still present in offspring of STZ dams and a deficit in nephron endowment was observed (control 1246.2±64.9 vs. STZ 822.4±74.0, <i>p&lt;</i>0.001). Kidney malformations in the form of duplex ureter and hydroureter were a common observation (26%) in embryos of diabetic pregnancy compared with controls (0%). Maternal insulin treatment from E13.5 normalised maternal glycaemia but did not normalise fetal weight nor prevent the nephron deficit. The detrimental effect of hyperglycemia on ureteric branching morphogenesis and, in turn, nephron endowment in the growth-restricted fetus highlights the importance of glycemic control in early gestation and during the initial stages of renal development.</p> </div

    Expression of Fraser syndrome genes in normal and polycystic murine kidneys

    Get PDF
    BACKGROUND: Fraser syndrome (FS) features renal agenesis and cystic kidneys. Mutations of FRAS1 (Fraser syndrome 1)and FREM2 (FRAS1-related extracellular matrix protein 2)cause FS. They code for basement membrane proteins expressed in metanephric epithelia where they mediate epithelial/mesenchymal signalling. Little is known about whether and where these molecules are expressed in more mature kidneys. METHODS: In healthy and congenital polycystic kidney (cpk)mouse kidneys we sought Frem2 expression using a LacZ reporter gene and quantified Fras family transcripts. Fras1 immunohistochemistry was undertaken in cystic kidneys from cpk mice and PCK (Pkhd1 mutant) rats (models of autosomal recessive polycystic kidney disease) and in wildtype metanephroi rendered cystic by dexamethasone. RESULTS: Nascent nephrons transiently expressed Frem2 in both tubule and podocyte epithelia. Maturing and adult collecting ducts also expressed Frem2. Frem2 was expressed in cpk cystic epithelia although Frem2 haploinsufficiency did not significantly modify cystogenesis in vivo. Fras1 transcripts were significantly upregulated, and Frem3 downregulated, in polycystic kidneys versus the non-cystic kidneys of littermates. Fras1 was immunodetected in cpk, PCK and dexamethasone-induced cystepithelia. CONCLUSIONS: These descriptive results are consistent with the hypothesis that Fras family molecules play diverse roles in kidney epithelia. In future, this should be tested by conditional deletion of FS genes in nephron segments and collecting ducts

    Role of Mitofusin 2 in the Renal Stress Response

    Get PDF
    The role of mitofusin 2 (MFN2), a key regulator of mitochondrial morphology and function in the renal stress response is unknown. To assess its role, the MFN2 floxed gene was conditionally deleted in the kidney of mice (MFN2 cKO) by Pax2 promoter driven Cre expression (Pax2Cre). MFN2 cKO caused severe mitochondrial fragmentation in renal epithelial cells that are critical for normal kidney tubular function. However, despite a small (20%) decrease in nephron number, newborn cKO pups had organ or tubular function that did not differ from littermate Cre-negative pups. MFN2 deficiency in proximal tubule epithelial cells in primary culture induced mitochondrial fragmentation but did not significantly alter ATP turnover, maximal mitochondrial oxidative reserve capacity, or the low level of oxygen consumption during cyanide exposure. MFN2 deficiency also did not increase apoptosis of tubule epithelial cells under non-stress conditions. In contrast, metabolic stress caused by ATP depletion exacerbated mitochondrial outer membrane injury and increased apoptosis by 80% in MFN2 deficient vs. control cells. Despite similar stress-induced Bax 6A7 epitope exposure in MFN2 deficient and control cells, MFN2 deficiency significantly increased mitochondrial Bax accumulation and was associated with greater release of both apoptosis inducing factor and cytochrome c. In conclusion, MFN2 deficiency in the kidney causes mitochondrial fragmentation but does not affect kidney or tubular function during development or under non-stress conditions. However, MFN2 deficiency exacerbates renal epithelial cell injury by promoting Bax-mediated mitochondrial outer membrane injury and apoptosis

    Hox10 Genes Function in Kidney Development in the Differentiation and Integration of the Cortical Stroma

    Get PDF
    Organogenesis requires the differentiation and integration of distinct populations of cells to form a functional organ. In the kidney, reciprocal interactions between the ureter and the nephrogenic mesenchyme are required for organ formation. Additionally, the differentiation and integration of stromal cells are also necessary for the proper development of this organ. Much remains to be understood regarding the origin of cortical stromal cells and the pathways involved in their formation and function. By generating triple mutants in the Hox10 paralogous group genes, we demonstrate that Hox10 genes play a critical role in the developing kidney. Careful examination of control kidneys show that Foxd1-expressing stromal precursor cells are first observed in a cap-like pattern anterior to the metanephric mesenchyme and these cells subsequently integrate posteriorly into the kidney periphery as development proceeds. While the initial cap-like pattern of Foxd1-expressing cortical stromal cells is unaffected in Hox10 mutants, these cells fail to become properly integrated into the kidney, and do not differentiate to form the kidney capsule. Consistent with loss of cortical stromal cell function, Hox10 mutant kidneys display reduced and aberrant ureter branching, decreased nephrogenesis. These data therefore provide critical novel insights into the cellular and genetic mechanisms governing cortical cell development during kidney organogenesis. These results, combined with previous evidence demonstrating that Hox11 genes are necessary for patterning the metanephric mesenchyme, support a model whereby distinct populations in the nephrogenic cord are regulated by unique Hox codes, and that differential Hox function along the AP axis of the nephrogenic cord is critical for the differentiation and integration of these cell types during kidney organogenesis

    Subjective outcomes after knee arthroplasty

    Full text link

    Effects of dexamethasone exposure on rat metanephric development: in vitro and in vivo studies.

    No full text
    Maternal administration of dexamethasone ( DEX) for 48 h early in rat kidney development results in offspring with a reduced nephron endowment. However, the mechanism through which DEX inhibits nephrogenesis is unknown. In this study, we hypothesized that DEX may indirectly inhibit nephrogenesis by inhibiting ureteric branching morphogenesis. Whole metanephroi from embryonic day 14.5 ( E14.5) rat embryos were cultured in the presence of DEX. DEX ( 10(-5) M) exposure for 2 days significantly inhibited ureteric branching compared with metanephroi grown in control media or DEX ( 10(-7) M). Culturing metanephroi for a further 3 days ( in control media only) reduced total glomerular number in metanephroi previously exposed to DEX ( 10(-5) M) or ( 10(-7) M) compared with control cultures. Expression of genes known to regulate ureteric branching morphogenesis was determined by real- time PCR in metanephroi after 2 days in culture. DEX exposure in vitro decreased expression of glial cell line- derived neurotrophic factor ( GDNF) and increased expression of bone morphogenetic protein- 4 ( BMP- 4) and transforming growth factor-beta 1 ( TGF-beta 1). Similar gene expression changes were found in E16.5 metanephroi in which the dam had been exposed to 2 days of DEX ( 0.2 mg . kg(-1) . day(-1)) at E14.5/15.5 in vivo. However, in kidneys collected at E20.5 after in vivo exposure for 2 days, GDNF expression was increased and BMP-4 and TGF- beta 1 expression decreased suggesting a biphasic response in gene expression to DEX exposure. These results show for the first time that inhibition of ureteric branching morphogenesis may be a key mechanism through which DEX exposure results in a reduced nephron endowment

    Ureteric branching morphogenesis in BMP4 heterozygous mutant mice

    No full text
    Exogenous bone morphogenetic protein 4 (BMP4) inhibits ureteric branching morphogenesis and amplifies the already existing branching asymmetry in the developing mouse kidney in vitro. In the present study we examined ureteric branching morphogenesis in BMP4/lacZ heterozygous (BMP4+/–) mice in vitro under control conditions and in the presence of exogenous BMP4 using three-dimensional image analysis software. The relative expression of BMP4 mRNA was determined in BMP4+/– and wildtype urogenital ridges using real-time PCR. Embryonic day 12.5 (E12.5) BMP4+/– and wildtype mouse metanephroi were cultured for 48 h with or without 260 ng mL−1 recombinant human BMP4 (rhBMP4) and were then wholemount immunostained in order to identify the ureteric epithelium, which was quantified in three dimensions. Despite a significant reduction in BMP4 mRNA in BMP4+/– mice, qualitative and quantitative studies identified no differences in ureteric branching morphogenesis between phenotypically normal BMP4+/– and wildtype metanephroi in either BMP4-treated or control cultures. Both BMP4+/– and wildtype metanephroi cultured in the presence of BMP4 showed a decrease in total ureteric length, branch number and ureteric volume, and increased average branch length compared with control cultures. A marked anterior–posterior asymmetry in both ureteric length, branch number and average branch length was observed in BMP4-treated metanephroi from both genotypes. A similar asymmetry was revealed in control metanephroi from both genotypes. This asymmetry is the result of reduced ureteric branching morphogenesis but not elongation in the posterior region of the kidney. These results suggest that despite reduced endogenous BMP4 mRNA levels, most BMP4+/– embryos can still facilitate normal ureteric branching morphogenesis during development. In addition, reduced endogenous levels of BMP4 do not alter the inhibitory effects of exogenous BMP4 on ureteric branching or amplification of normal renal asymmetry

    Combined prenatal and postnatal protein restriction influences adult kidney structure, function, and arterial pressure.

    No full text
    The effects of prenatal protein restriction on adult renal and cardiovascular function have been studied in considerable detail. However, little is known about the effects of life-long protein restriction, a common condition in the developing world. Therefore, we determined in rats the effects of combined pre-and postnatal protein restriction on adult arterial pressure and renal function and responses to increased dietary sodium. Nephron number was also determined. Male Sprague-Dawley rats were born to mothers fed a low [8% (wt/wt), LP] or normal [20% (wt/wt), NP] isocaloric protein diet throughout pregnancy and maintained on these diets after birth. At postnatal day 135, nephron number, mean arterial pressure (MAP), and renal function were determined. A high-NaCl [8.0% (wt/wt), high- salt] diet was fed to a subset of rats from weaning. MAP was less in LP than in NP rats (120 +/- 2 vs. 128 +/- 2 mmHg, P < 0.05) and was not significantly altered by increased salt intake. Nephron number was 31% less in LP than in NP rats (P < 0.001). The volume of individual glomeruli was also less in LP than in NP rats, as were calculated effective renal plasma flow and glomerular filtration rate. Glomerular filtration rate, but not effective renal plasma flow, appeared to be increased by high salt intake, particularly in LP rats. In conclusion, protein restriction induced a severe nephron deficit, but MAP was lower, rather than higher, in protein- restricted than in control rats in adulthood. These findings indicate that the postnatal environment plays a key role in determining the outcomes of developmental programming
    corecore