17 research outputs found

    Acid-sensing ion channel 1a drives AMPA receptor plasticity following ischemia and acidosis in hippocampal CA1 neurons

    Get PDF
    The CA1 region of the hippocampus is particularly vulnerable to ischemic damage. While NMDA receptors play a major role in excitotoxicity, it is thought to be exacerbated in this region by two forms of post-ischemic AMPA receptor (AMPAR) plasticity - namely, anoxic long-term potentiation (a-LTP), and a delayed increase in the prevalence of Ca2+ -permeable GluA2-lacking AMPARs (CP-AMPARs). The acid-sensing ion channel 1a (ASIC1a) which is expressed in CA1 pyramidal neurons, is also known to contribute to post-ischemic neuronal death and to physiologically induced LTP. This raises the question - does ASIC1a activation drive the post-ischemic forms of AMPAR plasticity in CA1 pyramidal neurons? We have tested this by examining organotypic hippocampal slice cultures (OHSCs) exposed to oxygen glucose deprivation (OGD), and dissociated cultures of hippocampal pyramidal neurons (HPN) exposed to low pH (acidosis). We find that both a-LTP and the delayed increase in the prevalence of CP-AMPARs are dependent on ASIC1a activation during ischemia. Indeed, acidosis alone is sufficient to induce the increase in CP-AMPARs. We also find that inhibition of ASIC1a channels circumvents any potential neuroprotective benefit arising from block of CP-AMPARs. By demonstrating that ASIC1a activation contributes to post-ischemic AMPAR plasticity, our results identify a functional interaction between acidotoxicity and excitotoxicity in hippocampal CA1 cells, and provide insight into the role of ASIC1a and CP-AMPARs as potential drug targets for neuroprotection. We thus propose that ASIC1a activation can drive certain forms of CP-AMPAR plasticity, and that inhibiting ASIC1a affords neuroprotection

    Cornichons modify channel properties of recombinant and glial AMPA receptors

    No full text
    Ionotropic glutamate receptors, which underlie a majority of excitatory synaptic transmission in the CNS, associate with transmembrane proteins that modify their intracellular trafficking and channel gating. Significant advances have been made in our understanding of AMPA-type glutamate receptor (AMPAR) regulation by transmembrane AMPAR regulatory proteins. Less is known about the functional influence of cornichons-unrelated AMPAR-interacting proteins, identified by proteomic analysis. Here we confirm that cornichon homologs 2 and 3 (CNIH-2 and CNIH-3), but not CNIH-1, slow the deactivation and desensitization of both GluA2-containing calciumimpermeable and GluA2-lacking calcium-permeable (CP)AMPARsexpressed in tsA201 cells. CNIH-2 and -3 also enhanced the glutamate sensitivity, single-channel conductance, and calcium permeability of CP-AMPARs while decreasing their block by intracellular polyamines. We examined the potential effects of CNIHs on native AMPARs by recording from rat optic nerve oligodendrocyte precursor cells (OPCs), known to express a significant population of CP-AMPARs. These glial cells exhibited surface labeling with an anti-CNIH-2/3 antibody. Two features of their AMPAR-mediated currents-the relative efficacy of the partial agonist kainate (I KA/I Glu ratio 0.4) and a greater than fivefold potentiation of kainate responses by cyclothiazide-suggest AMPAR association with CNIHs. Additionally, overexpression of CNIH-3 in OPCs markedly slowed AMPAR desensitization. Together, our experiments support the view that CNIHs are capable of altering key properties of AMPARs and suggest that they may do so in glia. © 2012 the authors

    The first 50 years of molecular pharmacology

    No full text
    In this Perspective, former and current editors of Molecular Pharmacology, together with the guest editors for this 50th Anniversary Issue, provide a historical overview of the journal since its founding in 1965. The substantial impact that Molecular Pharmacology has had on the field of pharmacology as well as on biomedical science is discussed, as is the broad scope of the journal. The authors conclude that, true to the original goals for the journal, Molecular Pharmacology today remains an outstanding venue for work that provides a mechanistic understanding of drugs, molecular probes, and their biologic targets

    The effect of intracellular Ca2+ on GABA-activated currents in cerebellar granule cells in culture

    No full text
    The patch clamp technique was used to study the effects of intracellular free calcium ([Ca2+]i) on GABAA-evoked whole-cell and single channel currents of cultured cerebellar granule cells. Changes in [Ca2+]i were obtained by adding to the extracellular solution the calcium ionophore A23187 (2 \u3bcm). The relationship between [Ca2+]i and [Ca2+]O in the presence or absence of A23187 was assessed using fluorimetric measurements from Fura-2 loaded cells. In 2 m m [Ca2+]o and A23187, [Ca2+]i was about 1.5 \u3bcm, whereas in the absence of A23187 it was about 250 n m. In whole-cell experiments (symmetrical chloride concentrations) at -50 mV, GABA (0.5 \u3bcm) evoked inward currents that did not desensitize. Bath application of A23187 significantly reduced the steady-state amplitude of GABA currents by 37 \ub1 6%. Single channel currents activated by GABA (0.5 \u3bcm) were also recorded in the outside-out configuration of the patch clamp technique. Kinetic analysis of single channel events revealed that A23187 significantly increased the long closed time constant (\u3c4c3) without affecting the open time constants (\u3c4o1 and \u3c4o2) or the short and medium closed time constants (\u3c4c1 and \u3c4c2). Moreover, application of A23187 induced a significant reduction of burst duration (\u3c4b). We conclude that a rise in [Ca2+]i by A23187 may decrease the binding affinity of GABA for the GABAA receptor. We thank Prof. D. Colquhoun for critical reading of the manuscript and Drs. F. Vittur and M. Fragonas for allowing us the use of the spectrofluorimeter. \ua9 1994 Springer-Verlag New York Inc
    corecore