32 research outputs found

    EIF4E (eukaryotic translation initiation factor 4E)

    Get PDF
    Review on EIF4E (eukaryotic translation initiation factor 4E), with data on DNA, on the protein encoded, and where the gene is implicated

    The Impact of Post-transcriptional Control: Better Living Through RNA Regulons

    Get PDF
    Traditionally, cancer is viewed as a disease driven by genetic mutations and/or epigenetic and transcriptional dysregulation. While these are undoubtedly important drivers, many recent studies highlight the disconnect between the proteome and the genome or transcriptome. At least in part, this disconnect arises as a result of dysregulated RNA metabolism which underpins the altered proteomic landscape observed. Thus, it is important to understand the basic mechanisms governing post-transcriptional control and how these processes can be co-opted to drive cancer cell phenotypes. In some cases, groups of mRNAs that encode protein involved in specific oncogenic processes can be co-regulated at multiple processing levels in order to turn on entire biochemical pathways. Indeed, the RNA regulon model was postulated as a means to understand how cells coordinately regulate transcripts encoding proteins in the same biochemical pathways. In this review, we describe some of the basic mRNA processes that are dysregulated in cancer and the biological impact this has on the cell. This dysregulation can affect networks of RNAs simultaneously thereby underpinning the oncogenic phenotypes observed

    Identification and characterization of the interaction between the methyl-7-guanosine cap maturation enzyme RNMT and the cap-binding protein eIF4E

    Get PDF
    The control of RNA metabolism is an important aspect of molecular biology with wide-ranging impacts on cells. Central to processing of coding RNAs is the addition of the methyl-7 guanosine (m(7)G) “cap” on their 5’ end. The eukaryotic translation initiation factor eIF4E directly binds the m(7)G cap and through this interaction plays key roles in many steps of RNA metabolism including nuclear RNA export and translation. eIF4E also stimulates capping of many transcripts through its ability to drive the production of the enzyme RNMT which methylates the G-cap to form the mature m(7)G cap. Here, we found that eIF4E also physically associated with RNMT in human cells. Moreover, eIF4E directly interacted with RNMT in vitro. eIF4E is only the second protein reported to directly bind the methyltransferase domain of RNMT, the first being its co-factor RAM. We combined high-resolution NMR methods with biochemical studies to define the binding interfaces for the RNMT-eIF4E complex. Further, we found that eIF4E competes for RAM binding to RNMT and conversely, RNMT competes for binding of well-established eIF4E-binding partners such as the 4E-BPs. RNMT uses novel structural means to engage eIF4E. Finally, we observed that m(7)G cap-eIF4E-RNMT trimeric complexes form, and thus RNMT-eIF4E complexes may be employed so that eIF4E captures newly capped RNA. In all, we show for the first time that the cap-binding protein eIF4E directly binds to the cap-maturation enzyme RNMT

    Monitoring eIF4E-Dependent Nuclear 3′ End mRNA Cleavage

    No full text
    International audienceIn eukaryotes, the maturation of the 3' ends of most transcripts involves cleavage and polyadenylation steps in the nucleus. While I was working in the group of Katherine Borden at the University of Montréal, we reported that the eukaryotic translation initiation factor 4E (eIF4E) promotes the 3' end cleavage of specific RNAs. Here, I describe how we monitored this specific maturation pathway using subcellular fractionation, quantitative RT-PCR, and an in vitro cleavage assay with the nuclear fraction

    The Cap-Binding Complex CBC and the Eukaryotic Translation Factor eIF4E: Co-Conspirators in Cap-Dependent RNA Maturation and Translation

    No full text
    The translation of RNA into protein is a dynamic process which is heavily regulated during normal cell physiology and can be dysregulated in human malignancies. Its dysregulation can impact selected groups of RNAs, modifying protein levels independently of transcription. Integral to their suitability for translation, RNAs undergo a series of maturation steps including the addition of the m7G cap on the 5′ end of RNAs, splicing, as well as cleavage and polyadenylation (CPA). Importantly, each of these steps can be coopted to modify the transcript signal. Factors that bind the m7G cap escort these RNAs through different steps of maturation and thus govern the physical nature of the final transcript product presented to the translation machinery. Here, we describe these steps and how the major m7G cap-binding factors in mammalian cells, the cap binding complex (CBC) and the eukaryotic translation initiation factor eIF4E, are positioned to chaperone transcripts through RNA maturation, nuclear export, and translation in a transcript-specific manner. To conceptualize a framework for the flow and integration of this genetic information, we discuss RNA maturation models and how these integrate with translation. Finally, we discuss how these processes can be coopted by cancer cells and means to target these in malignancy

    eIF4E3 acts as a tumor suppressor by utilizing an atypical mode of methyl-7-guanosine cap recognition

    No full text
    Recognition of the methyl-7-guanosine (m7G) cap structure on mRNA is an essential feature of mRNA metabolism and thus gene expression. Eukaryotic translation initiation factor 4E (eIF4E) promotes translation, mRNA export, proliferation, and oncogenic transformation dependent on this cap-binding activity. eIF4E–cap recognition is mediated via complementary charge interactions of the positively charged m7G cap between the negative π-electron clouds from two aromatic residues. Here, we demonstrate that a variant subfamily, eIF4E3, specifically binds the m7G cap in the absence of an aromatic sandwich, using instead a different spatial arrangement of residues to provide the necessary electrostatic and van der Waals contacts. Contacts are much more extensive between eIF4E3–cap than other family members. Structural analyses of other cap-binding proteins indicate this recognition mode is atypical. We demonstrate that eIF4E3 relies on this cap-binding activity to act as a tumor suppressor, competing with the growth-promoting functions of eIF4E. In fact, reduced eIF4E3 in high eIF4E cancers suggests that eIF4E3 underlies a clinically relevant inhibitory mechanism that is lost in some malignancies. Taken together, there is more structural plasticity in cap recognition than previously thought, and this is physiologically relevant
    corecore