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Identity 
Other names: CBP, EIF4E1, EIF4EL1, EIF4F, 
MGC111573 

HGNC (Hugo): EIF4E 

Location: 4q23 

Local order: EIF4E gene covers 51.38 kb, from 
100070829 to 100019447 (NCBI 36, March 2006), on 
the reverse strand. 

Gene Card (Weitzmann): GeneLoc location for 
GC04M100046: starts 100020235 bp from pter and 
ends 100070139 bp from pter (minus strand). 

1 alternative location: Ensembl: Chromosome 4: 
99799607-99851786 reverse strand. 

DNA/RNA 
Description 
The EIF4E gene spans >50 kbp and contains 8 exons, 
one of them being alternative. It codes for the major, 
4749 nucleotides long transcript variant 1, that codes 
217 aa long protein. The longest transcript, variant 2 
(4842 nucleotides) contains an additional in-frame exon 
in 3' coding region compared to variant 1 and codes for 
a protein (248 aa long, isoform 2) with a longer c-
terminus compared to isoform 1. Transcript variant 3 is 
3406 nucleotide long and uses an alternative exon for 
the 5'UTR and 5' coding region that results in 
translation initiation from a distinct ATG, and an 
isoform 3, (237 aa) with a longer and distinct N-
terminus compared to isoform 1. Transcript variants 2 

and 3 are predicted from cDNA sequences, but their 
expression at mRNA or protein levels was not studied. 

Transcription 
The promoter of the EIF4E gene lacks a canonical 
TATA box, but it contains a polypyrimidine element at 
position -25, named the eIF4E basal element (4EBE) 
that binds hnRNPK. hnRNPK interacts with TATA-
binding protein and recruits it to the promoter, 
explaining how the 4EBE might replace the TATA box 
in the EIF4E promoter (Lynch et al., 2005). Mapping of 
the minimal EIF4E promoter was found to contain 
CACGTG E box repeats (positions -77 and -232) that 
are c-myc responsive (Jones et al., 1996; Makhlouf et 
al., 2001). The same elements overlap for USF binding. 
Later mapping studies of the 2 kb promoter found AP-1 
binding elements involved in EIF4E transcriptional 
regulation in cardiac muscle cells (Makhlouf et al., 
2001) as well as Rel, Myb, NF-kB, SP-1, NF1, STAT, 
AP-4, ATB and CREB consensus motifs. p53 could 
also be involved in the regulation of eIF4E-1 
expression through its binding to c-myc, thereby 
preventing c-myc binding to the EIF4E promoter (Gao 
et al., 1998; Zhu et al., 2005). 
It was shown that eIF4E mRNA contains an AU-rich 
elements in the 3'UTR that is responsible for HuR-
mediated binding and stabilization (Topisirovic et al., 
2009b). 

Pseudogene 
Two pseudogenes are mapped so far: EIF4EP1 (also 
known as EIF4EL2 and dJ1022P6.3), on chromosome 
20 (location 20p13), (Entrez Gene ID:  
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Ternary complex of m7GpppA-eIF4E-4EBP1 peptide. eIF4E (blue) and the 4E-BP1 peptide (green) are shown with the ribbon model. 
The cap-recognition mode of eIF4E is characterized by a pi-pi sandwiching of the m7G base of the cap (here m7GpppA, orange) by the 
Trp56 and Trp102 indole rings. 
 
1980), (Pelletier et al., 1991), and EIF4EP2 on 
chromosome 17 (17q21.32), (Entrez Gene ID: 
100113387). 
In the report by Gao et al. (1998), numerous intronless 
eIF4E pseudogenes were found, all containing 
premature in-frame stop codons. 

Protein 
Description 
eIF4E is a 25 kD cap-binding protein, which exists both 
in a free form and as part of a multiprotein complex 
termed eIF4F. The eIF4E protein has two distinct 
functions. First, the eIF4E polypeptide functions in 
delivering cellular mRNAs to the eIF4F complex to 
further facilitate ribosome loading and mRNA 
translation. The other subunits of eIF4F complex are: 
eIF4A, a 50 kD polypeptide, ATP-dependent RNA 
helicase that facilitates melting of the mRNA 
secondary structure, and eIF4G, a 220 kD scaffolding 
protein of this complex. Second, eIF4E functions in 
mRNA export (see below). 
The cap-bound form of eIF4E was solved by X-ray 
crystallography for the human and mouse eIF4E and by 
NMR solution structure for the yeast homolog. It was 

shown that each consists of eight-stranded anti-parallel 
beta-sheets supported by three alpha-helices forming 
the palm and back of a "cupped" hand (Marcotrigiano 
et al., 1997; Matsuo et al., 1997; Tomoo et al., 2002). 
Two Trp residues (Trp56 and Trp102 for human eIF4E) 
located within a narrow cavity inside the concave 
surface, hold the guanine residue of the cap-analogue 
through pi-pi stacking interactions (McCoy et al., 1997; 
Wieczorek et al., 1997). A third Trp residue (Trp166 in 
human eIF4E) recognizes the presence of the N7-
methyl group of the cap structure. NMR structure of 
cap-free eIF4E (apo-eIF4E) exhibits structural 
differences in the cap-binding site and dorsal surface 
relative to cap-eIF4E. Alterations in the S4-H4 loop 
distal to cap binding site seems to be a key in 
modulating conformational changes of eIF4E upon 
ligand binding (Volpon et al., 2006). 
Although human and S. cerevisiae eIF4E counterparts 
have only approximately 30% sequence identity, they 
are functionally conserved and mammalian eIF4Es can 
rescue the lethality of eIF4E gene disruption in S. 
cerevisiae (Altmann et al., 1989; Joshi et al., 2002). 
Amino acid alignments of mammalian eIF4Es with 
eIF4Es from plants and yeast, coupled with deletion 
analyses from S. cerevisiae and D. rerio, reveal that the 
core of eIF4E represented by ~170 amino acids (from 
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His37 to His200 in human eIF4E) is conserved in all 
eukaryotes and is sufficient for cap recognition and 
binding to eIF4G and 4E-BPs (Vasilescu et al., 1996; 
Robalino et al., 2004), while N- and C-termini are 
considerably variable both in length and sequence 
(suggesting that they are dispensable for translation). It 
is possible that N- and C-termini may be involved in 
the regulation of eIF4E activity or could affect the 
stability of the protein (Scheper et al., 2002; Gross et 
al., 2003). Crystallographic studies of mouse eIF4E 
bound to either a fragment of eIF4G or 4E-BP1 
revealed that His37, Pro38, Val69, Trp73, Leu131, 
Glu132 and Leu135 (of human eIF4E) interact with 
eIF4E-binding regions of eIF4G and 4E-BPs 
(Marcotrigiano et al., 1999). Residues Val69 and Trp73 
are found within the phylogenetically conserved part of 
the consensus sequence. Substitution of Trp73 of 
mammalian eIF4E to non-aromatic amino acid disrupts 
ability of eIF4E to interact with eIF4G and 4E-BPs 
(Ptushkina et al., 1999). Substitution of human eIF4E 
Val69 for a Gly results in a variant that efficiently 
binds 4E-BP1, but has reduced capacity to interact with 
eIF4G and 4E-BP2 (Vasilescu et al., 1996; Ptushkina et 
al., 1999). 
eIF4E undergoes regulated phosphorylation at residue 
Ser209 (Flynn et al., 1995; Joshi et al., 1995). Mnk1 
and Mnk2 are identified as kinases that phosphorylate 
Ser209, and they are targets for mitogen-activated 
extracellular signal-regulated kinase and 
stress/cytokine-activated p38 mitogen-activated protein 
kinase pathways (Waskiewicz et al., 1997; Wang et al., 
1998; Waskiewicz et al., 1999; Scheper et al., 2001). 
Both enzymes also associate with eIF4G in vivo 
(Pyronnet et al., 1999; Waskiewicz et al., 1999; 
Scheper et al., 2001). The structural basis is still not 
clear as to whether phosphorylation of Ser209 
substantially changes the affinity of eIF4E for the cap 
structure (Minich et al., 1994; Scheper et al., 2002b). 
It was shown that eIF4E could be ubiquitinated and 
degraded in proteasome-dependent manner 
(Othumpangat et al., 2005; Murata et al., 2006). 
Recently, it was suggested that eIF4E could be 
modified by SUMO1 conjugation (Xu et al., 2010). 

Expression 
eIF4E is ubiquitously expressed, and its presence is 
essential for viability of cells or whole organisms 
(Altmann et al., 1987). The level of expression and 
phosphorylation status may vary between tissues and 
cellular differentiation state (Mao et al., 1992; 
Fahrenkrug et al., 1999; Walsh et al., 2003). It was 
shown that eIF4E is over-expressed in many types of 
cancer (see below). 

Localisation 
eIF4E is localized both in the cytoplasm and the 
nucleus of the cell. Up to 68% of eIF4E is found in the 
nucleus of cells from a wide variety of species ranging 
from yeast to humans (Lejbkowicz et al., 1992; Iborra 

et al., 2001; Strudwick et al., 2002). Localization of 
eIF4E can also be dynamic (Fahrenkrug et al., 1999; 
Strudwick et al., 2002). 

Function 
In the cytoplasm, eIF4E functions in the rate limiting 
step of cap-dependent translation initiation (Sonenberg 
et al., 1998). Here, eIF4E directly binds the 7-methyl 
guanosine "m7G cap" structure found on the 5' end of 
mRNAs, and recruits transcripts to the ribosomes 
thereby increasing translational efficiency (Pestova et 
al., 2000; von der Haar et al., 2004). In order for 
translation to proceed, eIF4E must associate with other 
factors of the eIF4F complex (eIF4G and eIF4A), as 
well as the other factors such as the ribosome-bound 
eIF3 and the poly(A)-binding protein. Once formed, the 
eIF4F complex is thought to scan 5'-3' from the cap, 
unwinding any existing secondary structure within the 
5'UTR region to reveal the translation initiation codon 
and to facilitate ribosome loading on the mRNA 
(Gingras et al., 1999). Importantly, eIF4E effects the 
translation of some mRNAs, known as eIF4E sensitive, 
more than other transcripts. When eIF4E is 
overexpressed, sensitive transcripts have a higher 
ribosome/mRNA ratio enabling more efficient 
translation (without modulating mRNA levels in the 
cytoplasm). Notably, sensitive mRNAs have more 
highly structured 5'UTRs versus insensitive 
housekeeping mRNAs such as GAPDH or actin, which 
contain short, unstructured 5'UTRs (Rhoads et al., 
1993; Sonenberg et al., 1998; De Benedetti et al., 
1999). Transcripts controlled at this level often code for 
proteins involved in proliferation such as c-myc, Pim 1, 
VEGF and ODC (Rhoads et al., 1993; Kevil et al., 
1996; Rousseau et al., 1996; Hoover et al., 1997). 
In the nucleus, eIF4E functions in the mRNA export of 
a specific subset of mRNAs, which contain a discrete 
50 nucleotides element in their 3'UTR known as the 
eIF4E sensitivity element (4E-SE) (Rousseau et al., 
1996; Culjkovic et al., 2005; Culjkovic et al., 2006; 
Culjkovic et al., 2007). Many mRNAs sensitive to 
eIF4E at the export level code for proteins that promote 
proliferation and survival (such as cyclin D1 and ODC 
mRNAs). Unlike bulk mRNA export which is 
TAP/NXF1 dependent, eIF4E dependent mRNA export 
is CRM1 dependent and requires the 4E-SE and the 
mRNA export factor LRPPRC (Culjkovic et al., 2006; 
Topisirovic et al., 2009a). 
Thus eIF4E can modulate gene expression at two 
levels: by exporting mRNAs to the cytoplasm 
increasing their concentration therein and by enhancing 
the translational efficiency of transcripts that are 
already in the cytoplasm. Not all transcripts are 
affected at both levels. Importantly, eIF4E requires its 
m7G cap binding function in order to act in either of 
these functions. 
eIF4E activity is regulated by many proteins. One of 
the best-characterized regulators of eIF4E is eIF4E 
binding protein 1 (BP1) (Sonenberg et al., 1998; 
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Gingras et al., 1999; Zimmer et al., 2000; Wendel et al., 
2007). This protein uses a conserved eIF4E binding site 
to associate with eIF4E, and thereby precludes access 
of eIF4E to eIF4G and the rest of the translation 
machinery (Sonenberg et al., 1998). This binding site is 
defined as follows: YXXXXLPhi (where X is any 
residue and Phi is a hydrophobic residue). Studies 
suggest that BP1 increases cap affinity and thereby 
sequesters both eIF4E and the RNA in question from 
the translational machinery (von der Haar et al., 2004). 
Further, endogenous BP1 associates with eIF4E in both 
the nuclear and cytoplasmic compartments and thus 
likely modulates eIF4E activity at both the level of 
translation and mRNA export (Rong et al., 2008). 
Phosphorylation of 4E-BP1 leads to a reduction in its 
interaction with eIF4E and thereby, results in increased 
translational activity of eIF4E. 4E-BP1 phosphorylation 
is mTOR dependent (Proud, 2007). However, BP1-/- 
and BP1-/-BP2-/- mice do not develop cancers more 
readily than controls (Blackshear et al., 1997; 
Tsukiyama-Kohara et al., 2001; Banko et al., 2006; Le 
Bacquer et al., 2007), highlighting the importance of 
redundancy of regulators in the control of eIF4E. 
The vast majority of other eIF4E regulators contain the 
YXXXXLPhi motif like eIF4G and the BPs. These 
regulators include a set of over 200 homeodomain 
proteins that contain this motif. Some of these members 
are negative regulators of eIF4E, such as PRH/Hex. 
PRH is a nuclear protein that impedes eIF4E's mRNA 
export function, and its overexpression leads to the 
cytoplasmic re-distribution of eIF4E (Topisirovic et al., 
2003a; Topisirovic et al., 2003b). Other members of 
this group of homeodomain containing regulators 
include Emx2, Otx, Engrailed 2, Hox11, Bicoid and 
HoxA9 (Topisirovic et al., 2005a). HoxA9 can 
stimulate both the nuclear and cytoplasmic functions of 
eIF4E (Topisirovic et al., 2005b). 
There is also a discrete class of eIF4E regulators that 
utilize a RING domain to impede eIF4E function. 
These regulators include the promyelocytic leukemia 
protein PML, and arenaviral Z proteins from LCMV 
and Lassa viruses (Lai et al., 2000; Cohen et al., 2001; 
Ardley et al., 2001). Binding of PML or the Z proteins 
to eIF4E reduces the affinity of eIF4E for the m7G cap 
by up to 100 fold (Nathan et al., 1997; Graff et al., 
2003; Topisirovic et al., 2003a). PML is a mostly 
nuclear protein, and thus primarily inhibits the mRNA 
export activity of eIF4E (Cohen et al., 2001; Kentsis et 
al., 2001; Culjkovic et al., 2005; Culjkovic et al., 2006; 
Culjkovic et al., 2008). 
In conclusion, the regulation of eIF4E activity is 
redundant and multi-factorial. There are tissue specific 
regulators such as the homeodomain proteins and more 
ubiquitous regulators such as PML and 4E-BP1. 
Redundancy of regulators is seen for both the nuclear 
and cytoplasmic arms of eIF4E activity. 

Homology 
By analysis of expressed sequence tag sequences, two 
additional eIF4E-family members in mammals named 
eIF4E-2 (also known as 4EHP, 4E-LP) and eIF4E-3 
were identified (Joshi et al., 2004). They differ in their 
structural signatures, functional characteristics and 
expression pattern from eIF4E (eIF4E-1). Like eIF4E-
1, eIF4E-2 is expressed in all tissues, with highest 
levels in the testis, while eIF4E-3 is detectable only in 
muscles, spleen and lung. Unlike eIF4E-1, eIF4E-2 and 
eIF4E-3 are not able to rescue the growth of S. 
cerevisiae lacking a functional EIF4E gene. While 
both, eIF4E-2 and eIF4E-3 can bind the cap in vitro, 
eIF4E-2 and eIF4E-3 differ from eIF4E-1 and between 
each-other in their affinities to 4E-BPs and eIF4G. It is 
proposed that each eIF4E-family member fills a 
specialized role in the regulation of recruitment of 
mRNAs to ribosomes through differences in their 
ability to bind the cap and/or to interact with eIF4G and 
4E-BPs. 

Mutations 
Note 
Autism 

Germinal 
Genome wide linkage studies in autism patients have 
shown linkage to the region containing the EIF4E locus 
on chromosome 4q (Yonan et al., 2003; Schellenberg et 
al., 2006). Recently, de novo chromosome translocation 
between 4q and 5q was reported in a boy with classic 
autism, and a breakpoint site was mapped within a 
proposed alternative transcript of eIF4E (Neves-Pereira 
et al., 2009). In the same study, screening of 120 autism 
families, two unrelated families were found, where in 
each case both autistic siblings and one of the parents 
harbored the same single nucleotide insertion at 
position -25 in the basal element of the EIF4E 
promoter. EMSA assays and reporter gene studies show 
that this mutation enhances EIF4E promoter activity by 
two fold. 

Implicated in 
Various cancers 
Prognosis 
eIF4E is overexpressed in many epithelial cell cancers, 
including breast (Kerekatte et al., 1995; Li et al., 1997; 
Li et al., 1998; Li et al., 2002; McClusky et al., 2005), 
colon (Rosenwald et al., 1999; Berkel et al., 2001), 
bladder (Dickinson et al., 1994; Bochner et al., 1995; 
Jaeger et al., 1995; Crew et al., 1996; Crew et al., 
2000), cervix (Lee et al., 2005; Matthews-Greer et al., 
2005), prostate (Graff et al., 2009), lung (Rosenwald et 
al., 2001; Seki et al., 2002; Jacobson et al., 2006) and 
squamous cell carcinoma of the head and neck (Nathan  
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et al., 1997b; Franklin et al., 1999; Nathan et al., 1999a; 
Nathan et al., 1999b; Sorrells et al., 1999b; Nathan et 
al., 2000; Chandy et al., 2002; Nathan et al., 2002). 
Some studies report that eIF4E is overexpressed in 
almost 100% of tumors of the breast, head and neck, 
and colon (Kerekatte et al., 1995; Nathan et al., 1999a; 
Nathan et al., 1999b). Several retrospective studies 
indicate that eIF4E overexpression is correlated with 
poor prognosis. 

Oncogenesis 
It has been demonstrated that eIF4E overexpression is 
associated with eIF4E gene amplification in both 
HNSCC and in breast carcinomas (Sorrells et al., 1998; 
Sorrells et al., 1999a; Sorrells et al., 1999b; Haydon et 
al., 2000). An increased level of eIF4E gene 
amplification was observed in invasive carcinomas of 
the head and neck as compared to benign tumors. 
Benign tumors only had moderate evidence for gene 
amplification, while malignant tumors had a 4-15 fold 
level of amplification. These studies suggest that 
progression to the malignant phenotype paralleled 
eIF4E gene amplification and overexpression (Haydon 
et al., 2000). Also, there was a progressive increase in 
the degree of eIF4E gene amplification and protein 
expression when comparisons were made among 
samples from tumor free margins of resected carcinoma 
specimens, tumor free regions adjacent to tumor core 
and tumor core samples (Sorrells et al., 1998). This 
suggests that molecular events such as eIF4E gene 
amplification may precede cellular morphological 
changes, and that surgical margins which appear tumor 
free microscopically, may have elevated eIF4E protein 
levels. Thus, eIF4E levels could be used as a marker for 
prediction of early recurrence. It has been postulated 
that somewhere in the multi-step pathway of 
carcinogenesis, elevation of eIF4E is a necessary event 
in progression of most solid tumors, and that eIF4E 
does not only reflect the proliferative status of cells but 
also their malignant properties (Anthony et al., 1996; 
Nathan et al., 1997b). 

Breast cancer 
Note 
eIF4E overexpression was detected at a range of 3-30 
fold in breast carcinomas compared to normal breast 
tissue (Kerekatte et al., 1995; Li et al., 1997), and 
eIF4E levels were significantly increased in 
vascularized malignant ductules of invasive carcinomas 
(Nathan et al., 1997a). Breast cancer patients with high 
eIF4E expression (>7 fold relative to normal) 
experienced a statistically significant poorer clinical 
outcome with a higher risk for recurrence and cancer 
related death (Li et al., 1998). There were no 
correlation between node stage and the degree of 4E 
overexpression (McClusky et al., 2005). 
 
 

Prostate cancer 
Note 
78% of prostate cancer samples in tissue microarray 
showed elevated eIF4E (Yang et al., 2007). eIF4E was 
found to be more than 3 times increased at protein level 
in prostate cancer, and also correlated with worse 
prognosis (Graff et al., 2008). 

Head and neck squamous cell 
carcinoma (HNSCC) 
Note 
In the HNSCC, eIF4E levels were found 3 to 22 fold 
elevated relative to normal controls (Nathan et al., 
1997b; Nathan et al., 1999a; Nathan et al., 1999b; 
Nathan et al., 2000; Nathan et al., 2002). High eIF4E 
levels in surgical margins are also predictive of 
increased risk of recurrence in HNSCC (Nathan et al., 
1997b; Nathan et al., 1999a; Nathan et al., 2000; 
Nathan et al., 2002).  
Overexpression of eIF4E in >5% of the basal layer of 
histologically tumor-free surgical margins of HNSCC 
patients predicted a significantly increased risk of 
recurrence (Nathan et al., 1999a). This prediction is 
important for patient outcome, as most HNSCC 
patients will succumb due to local recurrence (Nathan 
et al., 1997b; Nathan et al., 2000; Nathan et al., 2002). 

Acute myeloid leukemia 
Note 
In acute myeloid leukemia (AML), elevated eIF4E 
levels are characteristic of the poor prognosis in M4 
and M5 AML subtypes (Topisirovic et al., 2003b). 
Ribavirin, a competitive inhibitor of the cap was used 
in the clinical trial to target eIF4E in poor prognosis 
leukemia patients and led to striking clinical responses 
including complete and partial remissions (Assouline et 
al., 2009). This was the first time eIF4E was directly 
targeted in humans. 

Non-Hodgkin lymphoma 
Note 
Increased level of eIF4E was observed in non-
Hodgkin's lymphomas and not in benign lesions (Wang 
et al., 1999; Mossafa et al., 2006). Here, eIF4E levels 
correlated with the aggressiveness of these lesions 
(Wang et al., 1999; Mossafa et al., 2006). Recently it 
was reported that eIF4E is overexpressed in 40% of 
mantle cell lymphoma (Inamdar et al., 2009) and that 
eIF4E is an independent predictor of clinical outcome 
in MCL patients treated with the R-hyper CVAD 
regimen. 

Hodgkin lymphoma 
Note 
By immunohistochemical analysis it was shown that 
eIF4E is elevated in 69% of nodular sclerosis Hodgkin  
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lymphomas (HL), 75% mixed cellularity HL, and 91% 
lymphocyte predominant HL (Rosenwald et al., 2008). 

Colorectal adenomas and carcinomas 
Note 
eIF4E protein was found to be 2-6 times increased in 
tumor samples, and even more in the tumor margins 
(Rosenwald et al., 1999). 

Pancreatic ductal adenocarcinoma 
Note 
85% of pancreatic ductal adenocarcinoma samples 
showed high eIF4E staining in cancer tissue. There was 
no significant correlation between eIF4E expression 
and age, gender, histopathological grading, lymphatic 
invasion or lymph node metastasis. Also, there were no 
significant differences between the high eIF4E 
expressing group and either the low or moderate eIF4E 
expressing groups (Mishra et al., 2009). 

Lung carcinomas 
Note 
In bronchioalveolar carcinoma, estimated by 
immunohistochemistry, eIF4E was found to be 3-8 
times elevated (Rosenwald et al., 2001). Analysis of 
atypical adenomatous hyperplasia and peripheral lung 
adenocarcinoma samples showed 3.4-7.4 fold of eIF4E 
protein elevation (Seki et al., 2002). In Another study, 
54% of lung adenocarcinoma samples showed high 
eIF4E expression by immunostaining. Analyses of 
mRNA and protein from tumor tissues showed 6-10x 
elevation compared to surrounding normal tissues 
(Wang et al., 2009). Elevated eIF4E immunostaining 
was found in 81% of non small cell lung cancer 
(NSCLC) samples from tissue microarray (Yang et al., 
2007). 
Another study reported that 91% of NSCLC samples 
had stronger eIF4E staining than adjacent normal 
bronchial mucosa. According to subtypes, eIF4E was 
positive in 88% of adenocarcinoma and 100% cases of 
squamous cell carcinomas (Khoury et al., 2009). 
Patients with eIF4E had more than 3 times risk of death 
than those with negative eIF4E (Khoury et al., 2009). 

Bladder cancers 
Note 
eIF4E was found 4-10 times increased at protein and 
mRNA levels (Crew et al., 2000). 

Brain tumors (oligodendroglial, 
astrocytomas and meningiomas) 
Note 
In brain tumors, eIF4E was more than 3 times increased 
at protein level, being highest in oligodendroglial 
tumors (Tejada et al., 2009). 

Glioblastoma multiforme 
Note 
In tissue microarray 48% of samples showed elevated 
eIF4E immunostaining (Yang et al., 2007). 

Thyroid carcinoma 
Note 
Elevated immunostaining especially in aggressive types 
(Wang et al., 2001). 

Cervical cancers 
Note 
In cervical cancer, eIF4E was found 2-4 fold elevated 
by immunohistochemical staining (Matthews-Greer et 
al., 2005). Another study showed 7 fold increased 
mRNA levels of eIF4E (Van Trappen et al., 2002). 
Strong immunostaining of eIF4E was found in 21.1% 
of low-grade cervical intraepithelial neoplasias (CIN) 
and in 89.5% of high grade CIN, and none in low grade 
CINs. In another study, 100% of invasive squamous 
cell carcinoma showed strong eIF4E immunostaining, 
while mRNA was 2-4 times elevated comparing to 
normal samples (Lee et al., 2005). No significant 
difference in eIF4E expression was found between 
HPV+ and HPV- negative, single or double infected 
samples (Matthews-Greer et al., 2005). 

Ovarian cancers 
Note 
In tissue microarray 50% of ovarian cancer samples 
showed elevated eIF4E (Yang et al., 2007). Also, p-
eIF4E was increased in 56% analyzed samples (Noske 
et al., 2008). 
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