16 research outputs found

    Androgen receptor protein is down-regulated by basic fibroblast growth factor in prostate cancer cells

    Get PDF
    Interactions between polypeptide growth factors and the androgen receptor (AR) are important for regulation of cellular events in carcinoma of the prostate. Basic fibroblast growth factor (bFGF), the prototype of heparin-binding growth factors, and the AR are commonly expressed in prostate cancer. bFGF diminished prostate-specific antigen protein in the supernatants of androgen-stimulated human prostate cancer cells LNCaP by 80%. In the present study, we asked whether the bFGF effect on prostate-specific antigen is preceded by action on AR expression. LNCaP cells were treated with bFGF and AR protein expression was determined by immunoblotting and ligand binding assay. bFGF down-regulated AR protein in a dose-dependent manner showing a maximal effect at 50 ng ml−1both in the presence or absence of dihydrotestosterone. Down-regulation of AR protein expression occurred already after 8 h of bFGF treatment and a maximal inhibition was observed 24 h after addition of bFGF to culture media. As AR expression can be reduced by an increase in intracellular calcium levels, we investigated whether the bFGF effect on AR protein is mediated by this mechanism. Calcium release from intracellular stores and store-operated calcium influx after treatment with either bFGF or calcium ionophore A 23187 were measured by single cell fluorescence technique. The ionophore A 23187 was able to induce calcium influx and an increase in cytoplasmic calcium concentration in LNCaP cells. In contrast, bFGF was incapable of eliciting a similar effect. In contrast to AR protein, AR mRNA levels were not affected by bFGF as shown by semiquantitative reverse transcription polymerase chain reaction. In summary, these studies show that bFGF is a potent negative regulator of AR protein expression in the human prostate cancer cell line LNCaP. © 2000 Cancer Research Campaig

    Androgen receptors in prostate cancer.

    No full text

    Hyperactive androgen receptor in prostate cancer, what does it mean for new therapy concepts?

    No full text
    Investigations on androgen signaling alterations in the late stages of prostate cancer revealed new molecular mechanisms that may be in part responsible for failure of endocrine therapy. Both primary and metastatic lesions from prostate cancer express androgen receptor protein. Amplification of androgen receptor gene occurs in a subset of prostate cancer patients. Several point mutations of androgen receptor gene have been described; they generate receptors which are functionally activated by androgens, other steroids, and even by antihormones. The frequency of androgen receptor mutations may be high in tumor metastases. Functional activity of androgen receptor is influenced by nonsteroidal factors, such as peptide growth factors and second messengers. Thus, prostate cancer cells adapt to low androgen environment by various mechanisms utilizing androgen receptor. Therefore, new strategies for switching off the androgen receptor are needed

    An autocrine loop for vascular endothelial growth factor is established in prostate cancer cells generated after prolonged treatment with interleukin 6.

    No full text
    Concentrations of interleukin 6 (IL-6) and its receptor are increased in human prostate cancer. Prostate cancer LNCaP-IL-6+ cells, established after prolonged treatment with IL-6, have been found to acquire a growth advantage. Vascular endothelial growth factor (VEGF) may accelerate the growth of various tumours by stimulation of VEGF receptor 2 (VEGFR-2). To understand better the regulation of proliferation of LNCaP-IL-6+ cells, the expression of VEGF and VEGFR-2 was here investigated in the LNCaP-IL-6+ subline. VEGF was measured in cellular supernatants by enzyme-linked immunoassay. The expression of VEGFR-2 was assessed by Western blot. LNCaP-IL-6+ and control LNCaP-IL-6- cells were treated with a neutralising antibody against VEGFR-2. VEGF concentrations were 20-fold higher in LNCaP-IL-6+ than in LNCaP-IL-6- cells. The stimulatory effect of IL-6 on VEGF production was abolished by an inhibitor of the signalling pathway for phosphoinositol 3 kinase in LNCaP-IL-6+ and LNCaP-IL-6- cells. Exogenous VEGF did not stimulate proliferation in either LNCaP-IL-6+ cells or controls. VEGFR-2 was detected only in LNCaP-IL-6+ cells, in which the neutralising antibody caused a partial inhibition of cell proliferation. It was concluded that a VEGF autocrine loop is established in prostate cancer cells generated after chronic treatment with IL-6. Because of the upregulation of IL-6 in patients with prostate cancer, these findings might be clinically relevant
    corecore