4 research outputs found

    Table_1_Lead exposure dose-dependently affects oxidative stress, AsA-GSH, photosynthesis, and mineral content in pakchoi (Brassica chinensis L.).docx

    No full text
    Lead (Pb) is a heavy metal pollutant and negatively affects agriculture and ecosystems. Pb can cause oxidative stress and abnormal plant growth. The ascorbic acid-glutathione (AsA-GSH) cycle mainly exists in chloroplasts and resists oxidative stress, scavenges reactive oxygen radicals, and maintains normal photosynthesis. However, the dosage related effects of Pb on pakchoi photosynthesis, via oxidative stress and the AsA-GSH system, remains unclear. In this study, various Pb dosage stress models were tested (low: 300 mg/kg; medium: 600 mg/kg; high: 900 mg/kg). Pb stress induced a dose-dependent increase in Pb content in pakchoi leaves (P < 0.05). Principal component analysis showed that Se, B, and Pb were significantly and negatively correlated. Pb stress also increased MDA content and decreased antioxidant enzymes SOD, GSH-Px, and T-AOC activities (P < 0.05). We also found that Vc content, as well as the GSH/GSSG ratio, decreased. Additionally, Pb stress destroyed chloroplast structure, decreased photosynthesis indicators Pn, Tr, Gs, Ci and VPD, and attenuated Fv/Fm and Fv/Fo (P < 0.05). In the high-dose group, the contents of chlorophyll a, chlorophyll b, and carotenoids decreased significantly, while the expression of chloroplast development genes (GLK, GLN2) decreased (P < 0.05). Our data suggest that Pb stress leads to dosage-dependent, aberrant photosynthesis by inhibiting the AsA-GSH system in pakchoi. This study expands the Pb toxicology research field and provides indications for screening antagonists.</p

    Image_1_Lead exposure dose-dependently affects oxidative stress, AsA-GSH, photosynthesis, and mineral content in pakchoi (Brassica chinensis L.).jpeg

    No full text
    Lead (Pb) is a heavy metal pollutant and negatively affects agriculture and ecosystems. Pb can cause oxidative stress and abnormal plant growth. The ascorbic acid-glutathione (AsA-GSH) cycle mainly exists in chloroplasts and resists oxidative stress, scavenges reactive oxygen radicals, and maintains normal photosynthesis. However, the dosage related effects of Pb on pakchoi photosynthesis, via oxidative stress and the AsA-GSH system, remains unclear. In this study, various Pb dosage stress models were tested (low: 300 mg/kg; medium: 600 mg/kg; high: 900 mg/kg). Pb stress induced a dose-dependent increase in Pb content in pakchoi leaves (P < 0.05). Principal component analysis showed that Se, B, and Pb were significantly and negatively correlated. Pb stress also increased MDA content and decreased antioxidant enzymes SOD, GSH-Px, and T-AOC activities (P < 0.05). We also found that Vc content, as well as the GSH/GSSG ratio, decreased. Additionally, Pb stress destroyed chloroplast structure, decreased photosynthesis indicators Pn, Tr, Gs, Ci and VPD, and attenuated Fv/Fm and Fv/Fo (P < 0.05). In the high-dose group, the contents of chlorophyll a, chlorophyll b, and carotenoids decreased significantly, while the expression of chloroplast development genes (GLK, GLN2) decreased (P < 0.05). Our data suggest that Pb stress leads to dosage-dependent, aberrant photosynthesis by inhibiting the AsA-GSH system in pakchoi. This study expands the Pb toxicology research field and provides indications for screening antagonists.</p

    Table_2_Lead exposure dose-dependently affects oxidative stress, AsA-GSH, photosynthesis, and mineral content in pakchoi (Brassica chinensis L.).xlsx

    No full text
    Lead (Pb) is a heavy metal pollutant and negatively affects agriculture and ecosystems. Pb can cause oxidative stress and abnormal plant growth. The ascorbic acid-glutathione (AsA-GSH) cycle mainly exists in chloroplasts and resists oxidative stress, scavenges reactive oxygen radicals, and maintains normal photosynthesis. However, the dosage related effects of Pb on pakchoi photosynthesis, via oxidative stress and the AsA-GSH system, remains unclear. In this study, various Pb dosage stress models were tested (low: 300 mg/kg; medium: 600 mg/kg; high: 900 mg/kg). Pb stress induced a dose-dependent increase in Pb content in pakchoi leaves (P < 0.05). Principal component analysis showed that Se, B, and Pb were significantly and negatively correlated. Pb stress also increased MDA content and decreased antioxidant enzymes SOD, GSH-Px, and T-AOC activities (P < 0.05). We also found that Vc content, as well as the GSH/GSSG ratio, decreased. Additionally, Pb stress destroyed chloroplast structure, decreased photosynthesis indicators Pn, Tr, Gs, Ci and VPD, and attenuated Fv/Fm and Fv/Fo (P < 0.05). In the high-dose group, the contents of chlorophyll a, chlorophyll b, and carotenoids decreased significantly, while the expression of chloroplast development genes (GLK, GLN2) decreased (P < 0.05). Our data suggest that Pb stress leads to dosage-dependent, aberrant photosynthesis by inhibiting the AsA-GSH system in pakchoi. This study expands the Pb toxicology research field and provides indications for screening antagonists.</p

    DataSheet_1_ZjHXK5 and ZjHXK6 negatively regulate the sugar metabolism of Ziziphus jujuba Mill..doc

    No full text
    Hexokinase (HXK) plays a crucial role in plants, catalyzing the phosphorylation of hexose substances, which is one of the key steps in sugar metabolism and energy production. While HXK genes have been well-studied in model plants, the evolutionary and functional characteristics of HXK gene family in jujube is unknow. In this study, the HXK gene family members were identified by bioinformatics methods, the key members regulating glucose metabolism were identified by transcriptome data, and finally the function of the key genes was verified by instantaneous and stable genetic transformation. Our results showed that seven HXK genes were identified in the jujube genome, all of which were predict located in the chloroplast and contain Hexokinase-1 (PF00349) and Hexokinase-2 (PF03727) conserved domains. Most of HXK proteins were transmembrane protein with stable, lipid-soluble, hydrophilic. The secondary structure of ZjHXK proteins main α-helix, and contains two distinct tertiary structure. All ZjHXK genes contain nine exons and eight introns. Predictions of cis-regulatory elements indicate that the promoter region of ZjHXK contains a large number of MeJA responsive elements. Finally, combined with the analysis of the relationship between the expression and glucose metabolism, found that ZjHXK5 and ZjHXK6 may the key genes regulating sugar metabolism. Transient overexpression of ZjHXK5 and ZjHXK6 on jujube, or allogeneic overexpression of ZjHXK5 and ZjHXK6 on tomato would significantly reduce the content of total sugar and various sugar components. Transient silencing of ZjHXK5 and ZjHXK6 genes results in a significant increase in sucrose and total sugar content. Interestingly, the expression of ZjHXK5 and ZjHXK6 were also affected by methyl jasmonate.</p
    corecore