53 research outputs found

    Periodicities in the Daily Proton Fluxes from 2011 to 2019 Measured by the Alpha Magnetic Spectrometer on the International Space Station from 1 to 100 GV

    Get PDF
    We present the precision measurement of the daily proton fluxes in cosmic rays from May 20, 2011 to October 29, 2019 (a total of 2824 days or 114 Bartels rotations) in the rigidity interval from 1 to 100 GV based on 5.5×109 protons collected with the Alpha Magnetic Spectrometer aboard the International Space Station. The proton fluxes exhibit variations on multiple timescales. From 2014 to 2018, we observed recurrent flux variations with a period of 27 days. Shorter periods of 9 days and 13.5 days are observed in 2016. The strength of all three periodicities changes with time and rigidity. The rigidity dependence of the 27-day periodicity is different from the rigidity dependences of 9-day and 13.5-day periods. Unexpectedly, the strength of 9-day and 13.5-day periodicities increases with increasing rigidities up to ∼10 GV and ∼20 GV, respectively. Then the strength of the periodicities decreases with increasing rigidity up to 100 GV.</p

    Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station

    Get PDF
    A precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge of the rigidity dependence of the proton flux is important in understanding the origin, acceleration, and propagation of cosmic rays. We present the detailed variation with rigidity of the flux spectral index for the first time. The spectral index progressively hardens at high rigidities.</p

    Behavior of structural metastability in nanocrystalline FeS

    No full text

    Crosslinked collagen/chitosan matrix for artificial livers

    Get PDF
    Matrices composed of collagen and chitosan may create an appropriate environment for the regeneration of livers. In this study, we have prepared, characterized and evaluated a new collagen/chitosan matrix (CCM). The CCM was made by using crosslinking agent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) in N-hydroxysuccinimide (NHS) and a 2-morpholinoethane sulfonic acid (MES) buffer system. The chemical characteristics were evaluated by Fourier-transformed infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The mechanical strength was measured by tensile tests. The platelet deposition and hepatocyte culture experiments show that CCM has excellent blood and cell compatibility. The results suggest that the CCM is a promising candidate matrix for implantable bioartificial livers.\u

    An Ecological Risk Evaluation of Land Utilization in Dalian

    No full text
    corecore