1,892 research outputs found

    Characteristics of profiles of gamma-ray burst pulses associated with the Doppler effect of fireballs

    Full text link
    In this paper, we derive in a much detail the formula of count rates, in terms of the integral of time, of gamma-ray bursts in the framework of fireballs, where the Doppler effect of the expanding fireball surface is the key factor to be concerned. Effects arising from the limit of the time delay due to the limited regions of the emitting areas in the fireball surface and other factors are investigated. Our analysis shows that the formula of the count rate of fireballs can be expressed as a function of τ\tau which is the observation time scale relative to the dynamical time scale of the fireball. The profile of light curves of fireballs depends only on the relative time scale, entirely independent of the real time scale and the real size of the objects. It displays in detail how a cutoff tail, or a turn over, feature (called a cutoff tail problem) in the decay phase of a light curve can be formed. This feature is a consequence of a hot spot in the fireball surface, moving towards the observer, and was observed in a few cases previously. By performing fits to the count rate light curves of six sample sources, we show how to obtain some physical parameters from the observed profile of the count rate of GRBs. In addition, the analysis reveals that the Doppler effect of fireballs could lead to a power law relationship between the FWHMFWHM of pulses and energy, which were observed previously by many authors.Comment: 38 pages, 10 figures; accepted for publication in ApJ (10 December 2004, v617

    Diaqua­bis(1,10-phenanthroline)magnesium dichromate(VI) 1,10-phenanthroline disolvate

    Get PDF
    In the title compound, [Mg(C12H8N2)2(H2O)2][Cr2O7]·2C12H8N2, the cation and anion are situated on a twofold rotation axis. The MgII ion is coordinated by four N atoms from two 1,10-phenanthroline ligands and two O atoms from coordinated water mol­ecules in a distorted octa­hedral geometry. Inter­molecular O—H⋯N and O—H⋯O hydrogen bonds and π–π inter­actions between the aromatic rings [shortest centroid–centroid separation = 3.527 (2) Å] link the cations, anions and 1,10-phenanthroline solvent mol­ecules into a hydrogen-bonded cluster

    Ultra-thin Topological Insulator Bi2Se3 Nanoribbons Exfoliated by Atomic Force Microscopy

    Full text link
    Ultra-thin topological insulator nanostructures, in which coupling between top and bottom surface states takes place, are of great intellectual and practical importance. Due to the weak Van der Waals interaction between adjacent quintuple layers (QLs), the layered bismuth selenide (Bi2Se3), a single Dirac-cone topological insulator with a large bulk gap, can be exfoliated down to a few QLs. In this paper, we report the first controlled mechanical exfoliation of Bi2Se3 nanoribbons (> 50 QLs) by an atomic force microscope (AFM) tip down to a single QL. Microwave impedance microscopy is employed to map out the local conductivity of such ultra-thin nanoribbons, showing drastic difference in sheet resistance between 1~2 QLs and 4~5 QLs. Transport measurement carried out on an exfoliated (\leq 5 QLs) Bi2Se3 device shows non-metallic temperature dependence of resistance, in sharp contrast to the metallic behavior seen in thick (> 50 QLs) ribbons. These AFM-exfoliated thin nanoribbons afford interesting candidates for studying the transition from quantum spin Hall surface to edge states

    Peritumoral administration of DRibbles-pulsed antigen-presenting cells enhances the antitumor efficacy of anti-GITR and anti-PD-1 antibodies via an antigen presenting independent mechanism.

    Get PDF
    BACKGROUND: TNF receptor family agonists and checkpoint blockade combination therapies lead to minimal tumor clearance of poorly immunogenic tumors. Therefore, a need to enhance the efficacy of this combination therapy arises. Antigen-presenting cells (APCs) present antigen to T cells and steer the immune response through chemokine and cytokine secretion. DRibbles (DR) are tumor-derived autophagosomes containing tumor antigens and innate inflammatory adjuvants. METHODS: Using preclinical murine lung and pancreatic cancer models, we assessed the triple combination therapy of GITR agonist and PD-1 blocking antibodies with peritumoral injections of DRibbles-pulsed-bone marrow cells (BMCs), which consisted mainly of APCs, or CD103+ cross-presenting dendritic cells (DCs). Immune responses were assessed by flow cytometry. FTY720 was used to prevent T-cell egress from lymph nodes to assess lymph node involvement, and MHC-mismatched-BMCs were used to assess the necessity of antigen presentation by the peritumorally-injected DR-APCs. RESULTS: Tritherapy increased survival and cures in tumor-bearing mice compared to combined antibody therapy or peritumoral DR-BMCs alone. Peritumorally-injected BMCs remained within the tumor for at least 14 days and tritherapy efficacy was dependent on both CD4+ and CD8+ T cells. Although the overall percent of tumor-infiltrating T cells remained similar, tritherapy increased the ratio of effector CD4+ T cells-to-regulatory T cells, CD4+ T-cell cytokine production and proliferation, and CD8+ T-cell cytolytic activity in the tumor. Despite tritherapy-induced T-cell activation and cytolytic activity in lymph nodes, this T-cell activation was not required for tumor regression and enhanced survival. Replacement of DR-BMCs with DR-pulsed-DCs in the tritherapy led to similar antitumor effects, whereas replacement with DRibbles was less effective but delayed tumor growth. Interestingly, peritumoral administration of DR-pulsed MHC-mismatched-APCs in the tritherapy led to similar antitumor effects as MHC-matched-APCs, indicating that the observed enhanced antitumor effect was mediated independently of antigen presentation by the administered APCs. CONCLUSIONS: Overall, these results demonstrate that peritumoral DR-pulsed-BMC/DC administration synergizes with GITR agonist and PD-1 blockade to locally modulate and sustain tumor effector T-cell responses independently of T cell priming and perhaps through innate inflammatory modulations mediated by the DRibbles adjuvant. We offer a unique approach to modify the tumor microenvironment to benefit T-cell-targeted immunotherapies

    Colorectal cancer screening with fecal occult blood test: A 22-year cohort study.

    Get PDF
    The aim of the present study was to investigate the efficacy of colorectal cancer (CRC) screening with a three-tier fecal occult blood test (FOBT) in the Chinese population. The study was performed between 1987 and 2008 at the Beijing Military General Hospital, in a cohort of army service males and females aged >50 years. Between 1987 and 2005, a three-tier screening program, comprising guaiac-based FOBTs (gFOBTs), followed by immunochemical FOBTs for positive guaiac test samples and then colonoscopy for positive immunochemical test subjects, was performed annually. The cohort was followed up until 2008. The cohort included 5,104 subjects, of which, 3,863 subjects participated in screening (screening group) and 1,241 did not (non-screening group). The two groups did not differ in age, gender or other major risk factors for colon cancer. Overall, 36 CRCs occurred in the screening group and 21 in the non-screening group. Compared with the non-screening group, the relative risk for the incidence and mortality of CRC was 0.51 [95% confidence interval (CI), 0.30-0.87] and 0.36 (95% CI, 0.18-0.71), respectively, in the screening group. The general sensitivity of this three-tier FOBT was 80.6% (95% CI, 65.3-91.1). Thus, annual screening using the three-tier FOBT program may reduce the CRC incidence and mortality rate

    Experimental study and weighting analysis of factors influencing gas desorption

    Get PDF
    Gas is one of the necessary contributing factors for coal and gas outburst accidents, and the gas desorbed in coal is the energy carrier in the outburst process. The study of gas desorption laws is the premise and basis for gas content determination and gas accident prevention. To solve the problem of inaccurate gas content measurement due to the unclear characteristics of rapid gas desorption in 0–10 s, the gas desorption experimental device was improved, the influence factors of gas desorption were studied experimentally, and a comprehensive analysis method was proposed based on the gas desorption rate, gas desorption efficiency, initial gas desorption amount and total desorbed gas. The experiment analysed five factors that affected gas desorption, including the degree of metamorphism, type of failure, particle size, pressure and temperature. The results show that there is a monotonically decreasing power function relationship between the initial gas desorption rate and time and a monotonically increasing logarithmic function relationship between the gas desorption amount and time; the curve has a limit value. The gas desorption amount is large in 0–10 s and increases slowly afterwards. Among the factors affecting gas desorption, their importance decreases in the order of pressure > metamorphism > particle size > failure type > temperature. This study is of great practical value for the calculation of gas losses in gas content determination, and the resulting gas desorption laws are of great importance in guiding gas control work

    Visualizing the dynamic behavior of poliovirus plus-strand RNA in living host cells

    Get PDF
    Dynamic analysis of viral nucleic acids in host cells is important for understanding virus–host interaction. By labeling endogenous RNA with molecular beacon, we have realized the direct visualization of viral nucleic acids in living host cells and have studied the dynamic behavior of poliovirus plus-strand RNA. Poliovirus plus-strand RNA was observed to display different distribution patterns in living Vero cells at different post-infection time points. Real-time imaging suggested that the translocation of poliovirus plus-strand RNA is a characteristic rearrangement process requiring intact microtubule network of host cells. Confocal-FRAP measurements showed that 49.4 ± 3.2% of the poliovirus plus-strand RNA molecules diffused freely (with a D-value of 9.6 ± 1.6 × 10(−10) cm(2)/s) within their distribution region, while the remaining (50.5 ± 2.9%) were almost immobile and moved very slowly only with change of the RNA distribution region. Under the electron microscope, it was found that virus-induced membrane rearrangement is microtubule-associated in poliovirus-infected Vero cells. These results reveal an entrapment and diffusion mechanism for the movement of poliovirus plus-strand RNA in living mammalian cells, and demonstrate that the mechanism is mainly associated with microtubules and virus-induced membrane structures
    corecore