16 research outputs found

    Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer.

    Get PDF
    Engineering magnetic anisotropy in two-dimensional systems has enormous scientific and technological implications. The uniaxial anisotropy universally exhibited by two-dimensional magnets has only two stable spin directions, demanding 180° spin switching between states. We demonstrate a previously unobserved eightfold anisotropy in magnetic SrRuO3 monolayers by inducing a spin reorientation in (SrRuO3)1/(SrTiO3) N superlattices, in which the magnetic easy axis of Ru spins is transformed from uniaxial 〈001〉 direction (N < 3) to eightfold 〈111〉 directions (N ≥ 3). This eightfold anisotropy enables 71° and 109° spin switching in SrRuO3 monolayers, analogous to 71° and 109° polarization switching in ferroelectric BiFeO3. First-principle calculations reveal that increasing the SrTiO3 layer thickness induces an emergent correlation-driven orbital ordering, tuning spin-orbit interactions and reorienting the SrRuO3 monolayer easy axis. Our work demonstrates that correlation effects can be exploited to substantially change spin-orbit interactions, stabilizing unprecedented properties in two-dimensional magnets and opening rich opportunities for low-power, multistate device applications

    Activating the Basal Planes and Oxidized Oxygens in Layer‐Structured Na0.6CoO2 for Boosted OER Activity

    No full text
    Abstract With the CoO2 slabs consisting of Co4O4 cubane structure, layered NaxCoO2 are considered promising candidates for oxygen evolution reaction (OER) in alkaline media given their earth‐abundant and structural advantages. However, due to the strong adsorption of intermediates on the large basal planes, NaxCoO2 cannot meet the activity demands. Here, a novel one‐pot synthesis strategy is proposed to realize the high solubility of iron in NaxCoO2 in an air atmosphere. The optimist Na0.6Co0.9Fe0.1O2 exhibits enhanced OER activity compared to their pristine and other reported Fe‐doped NaxCoO2 counterparts. Such an enhancement is mainly ascribed to the abundant active sites on the activated basal planes and the participation of oxidized oxygen as active sites independently, which breaks the scaling relationship limit in the OER process. This work is expected to contribute to the understanding of the modification mechanism of Fe‐doped cobalt‐based oxides and the exploitation of layer‐structured oxides for energy application

    Growth of high quality Sr 2

    No full text

    4D printing of shape memory inferior vena cava filters based on copolymer of poly(glycerol sebacate) acrylate-co-hydroxyethyl methacrylate (PGSA-HEMA)

    No full text
    Biodegradable shape memory polymers (SMP) with suitable transition temperatures (Tr) and mechanical properties are highly demanded in biomedical field as deployable medical devices. Herein, we report a 4D printing shape memory Inferior Vena Cava Filters (IVCFs), an implantation device, which could prevent the fatal pulmonary embolism, to exemplify the applicability of the biodegradable shape memory polymer in biomedical device field. The IVCF composed of poly(glycerol sebacate) acrylate-co-hydroxyethyl methacrylate (PGSA-co-HEMA) was digital light processing (DLP) 3D printed. The appropriate mechanical property and Tr = 37.8 °C, which is close to human body temperature, was tailored by tuning the ratio of the raw material. PGSA-PHEMA presents an excellent cytocompatibility, hemocompatibility and histocompatibility as implants. Besides, in vitro degradation results indicate the biodegradability but withhold the mechanical properties within the service time. Furthermore, the simulated filter deploying and fully emboli interception verifies the successful realization of the concept of rapid, minimally invasive and controllable implantation of the 4D printing of IVCFs through the SMP transformation process, and the feasibility of the filter as well. Therefore, this work provides a new biocompatible SMP and offers a new strategy for developing deployable medical devices

    Enhancement of spintronic terahertz emission enabled by increasing Hall angle and interfacial skew scattering

    No full text
    Abstract Spintronic terahertz (THz) emitters (STEs) based on magnetic heterostructures have emerged as promising THz sources. However, it is still a challenge to achieve a higher intensity STE to satisfy all kinds of practical applications. Herein, we report a STE based on Pt0.93(MgO)0.07/CoFeB nanofilm by introducing dispersed MgO impurities into Pt, which reaches a 200% intensity compared to Pt/CoFeB and approaches the signal of 500 μm ZnTe crystal under the same pump power. We obtain a smaller spin diffusion length of Pt0.93(MgO)0.07 and an increased thickness-dependent spin Hall angle relative to the undoped Pt. We also find that the thickness of a Pt layer leads to a drastic change in the interface role in the spintronic THz emission, suggesting that the underlying mechanism of THz emission enhancement is a combined effect of enhanced bulk spin hall angle and the interfacial skew scattering by MgO impurities. Our findings demonstrate a simple way to realize high-efficiency, stable, advanced spintronic THz devices
    corecore