92 research outputs found

    Intelligence of Astronomical Optical Telescope: Present Status and Future Perspectives

    Full text link
    Artificial intelligence technology has been widely used in astronomy, and new artificial intelligence technologies and application scenarios are constantly emerging. There have been a large number of papers reviewing the application of artificial intelligence technology in astronomy. However, relevant articles seldom mention telescope intelligence separately, and it is difficult to understand the current development status and research hotspots of telescope intelligence from these papers. This paper combines the development history of artificial intelligence technology and the difficulties of critical technologies of telescopes, comprehensively introduces the development and research hotspots of telescope intelligence, then conducts statistical analysis on various research directions of telescope intelligence and defines the research directions' merits. All kinds of research directions are evaluated, and the research trend of each telescope's intelligence is pointed out. Finally, according to the advantages of artificial intelligence technology and the development trend of telescopes, future research hotspots of telescope intelligence are given.Comment: 19 pages, 6 figure, for questions or comments, please email [email protected]

    Gattini 2010: Cutting Edge Science at the Bottom of the World

    Get PDF
    The high altitude Antarctic sites of Dome A and the South Pole offer intriguing locations for future large scale optical astronomical Observatories. The Gattini project was created to measure the optical sky brightness, large area cloud cover and aurora of the winter-time sky above such high altitude Antarctic sites. The Gattini-DomeA camera was installed on the PLATO instrument module as part of the Chinese-led traverse to the highest point on the Antarctic plateau in January 2008. This single automated wide field camera contains a suite of Bessel photometric filters (B, V, R) and a long-pass red filter for the detection and monitoring of OH emission. We have in hand one complete winter-time dataset (2009) from the camera that was recently returned in April 2010. The Gattini-South Pole UV camera is a wide-field optical camera that in 2011 will measure for the first time the UV properties of the winter-time sky above the South Pole dark sector. This unique dataset will consist of frequent images taken in both broadband U and B filters in addition to high resolution (R similar to 5000) long slit spectroscopy over a narrow bandwidth of the central field. The camera is a proof of concept for the 2m-class Antarctic Cosmic Web Imager telescope, a dedicated experiment to directly detect and map the redshifted lyman alpha fluorescence or Cosmic Web emission we believe possible due to the unique geographical qualities of the site. We present the current status of both projects

    Photometry of Variable Stars from Dome A, Antarctica

    Get PDF
    Dome A on the Antarctic plateau is likely one of the best observing sites on Earth thanks to the excellent atmospheric conditions present at the site during the long polar winter night. We present high-cadence time-series aperture photometry of 10,000 stars with i<14.5 mag located in a 23 square-degree region centered on the south celestial pole. The photometry was obtained with one of the CSTAR telescopes during 128 days of the 2008 Antarctic winter. We used this photometric data set to derive site statistics for Dome A and to search for variable stars. Thanks to the nearly-uninterrupted synoptic coverage, we find 6 times as many variables as previous surveys with similar magnitude limits. We detected 157 variable stars, of which 55% are unclassified, 27% are likely binaries and 17% are likely pulsating stars. The latter category includes delta Scuti, gamma Doradus and RR Lyrae variables. One variable may be a transiting exoplanet.Comment: Accepted for publication in the Astronomical Journal. PDF version with high-resolution figures available at http://faculty.physics.tamu.edu/lmacri/papers/wang11.pd

    The First Release of the CSTAR Point Source Catalog from Dome A, Antarctica

    Get PDF
    In 2008 January the 24th Chinese expedition team successfully deployed the Chinese Small Telescope ARray (CSTAR) to DomeA, the highest point on the Antarctic plateau. CSTAR consists of four 14.5cm optical telescopes, each with a different filter (g, r, i and open) and has a 4.5degree x 4.5degree field of view (FOV). It operates robotically as part of the Plateau Observatory, PLATO, with each telescope taking an image every 30 seconds throughout the year whenever it is dark. During 2008, CSTAR #1 performed almost flawlessly, acquiring more than 0.3 million i-band images for a total integration time of 1728 hours during 158 days of observations. For each image taken under good sky conditions, more than 10,000 sources down to 16 mag could be detected. We performed aperture photometry on all the sources in the field to create the catalog described herein. Since CSTAR has a fixed pointing centered on the South Celestial Pole (Dec =-90 degree), all the sources within the FOV of CSTAR were monitored continuously for several months. The photometric catalog can be used for studying any variability in these sources, and for the discovery of transient sources such as supernovae, gamma-ray bursts and minor planets.Comment: 1 latex file and 9 figures The paper is accepted by PAS

    The sky brightness and transparency in i-band at Dome A, Antarctica

    Full text link
    The i-band observing conditions at Dome A on the Antarctic plateau have been investigated using data acquired during 2008 with the Chinese Small Telescope ARray. The sky brightness, variations in atmospheric transparency, cloud cover, and the presence of aurorae are obtained from these images. The median sky brightness of moonless clear nights is 20.5 mag arcsec^{-2} in the SDSS ii band at the South Celestial Pole (which includes a contribution of about 0.06 mag from diffuse Galactic light). The median over all Moon phases in the Antarctic winter is about 19.8 mag arcsec^{-2}. There were no thick clouds in 2008. We model contributions of the Sun and the Moon to the sky background to obtain the relationship between the sky brightness and transparency. Aurorae are identified by comparing the observed sky brightness to the sky brightness expected from this model. About 2% of the images are affected by relatively strong aurorae.Comment: There are 1 Latex file and 14 figures accepted by A

    The AST3-NIR Camera for the Kunlun Infrared Sky Survey

    Get PDF
    AST3-NIR is a new infrared camera for deployment with the AST3-3 wide-field survey telescope to Dome A on the Antarctic plateau. This project is designed to take advantage of the low Antarctic infrared sky thermal background (particularly within the Kdark near infrared atmospheric window at 2.4 μm) and the long Antarctic nights to provide high sensitivity temporal data from astronomical sources. The data collected from the Kunlun Infrared Sky Survey (KISS) will be used to conduct a range of astronomical science cases including the study of supernovae, exo-planets, variable stars, and the cosmic infrared background

    Data Release of the AST3-2 Automatic Survey from Dome A, Antarctica

    Full text link
    AST3-2 is the second of the three Antarctic Survey Telescopes, aimed at wide-field time-domain optical astronomy. It is located at Dome A, Antarctica, which is by many measures the best optical astronomy site on the Earth's surface. Here we present the data from the AST3-2 automatic survey in 2016 and the photometry results. The median 5σ\sigma limiting magnitude in ii-band is 17.8 mag and the light curve precision is 4 mmag for bright stars. The data release includes photometry for over 7~million stars, from which over 3,500 variable stars were detected, with 70 of them newly discovered. We classify these new variables into different types by combining their light curve features with stellar properties from surveys such as StarHorse.Comment: 16 pages, 20 figures, accepted for publication in MNRA

    Airglow and Aurorae at Dome A, Antarctica

    Get PDF
    Despite the absence of artificial light pollution at Antarctic plateau sites such as Dome A, other factors such as airglow, aurorae, and extended periods of twilight have the potential to adversely affect optical observations. We present a statistical analysis of the airglow and aurorae at Dome A using spectroscopic data from Nigel, an optical/near-IR spectrometer operating in the 300–850 nm range. These data complement photometric images from Gattini, a wide-field (90°) CCD camera with B, V, and R filters, allowing the background sky brightness to be disentangled from the various airglow and auroral emission lines. The median auroral contribution to the B, V, and R photometric bands is found to be 22.9, 23.4, and 23.0 mag arcsec^(-2), respectively. Auroral emissions most frequently occur between 10–23 hr local time, when up to 50% of observations are above airglow-level intensities. While infrequent, the strongest emissions detected occurred in the hours just prior to magnetic midnight. We are also able to quantify the amount of annual dark time available as a function of wavelength, as well as in the standard BVR photometric bands. On average, twilight ends when the Sun reaches a zenith distance of 102.6°
    • …
    corecore