6 research outputs found

    Is the Classic Convex Decomposition Optimal for Bound-Preserving Schemes in Multiple Dimensions?

    Full text link
    Since proposed in [X. Zhang and C.-W. Shu, J. Comput. Phys., 229: 3091--3120, 2010], the Zhang--Shu framework has attracted extensive attention and motivated many bound-preserving (BP) high-order discontinuous Galerkin and finite volume schemes for various hyperbolic equations. A key ingredient in the framework is the decomposition of the cell averages of the numerical solution into a convex combination of the solution values at certain quadrature points, which helps to rewrite high-order schemes as convex combinations of formally first-order schemes. The classic convex decomposition originally proposed by Zhang and Shu has been widely used over the past decade. It was verified, only for the 1D quadratic and cubic polynomial spaces, that the classic decomposition is optimal in the sense of achieving the mildest BP CFL condition. Yet, it remained unclear whether the classic decomposition is optimal in multiple dimensions. In this paper, we find that the classic multidimensional decomposition based on the tensor product of Gauss--Lobatto and Gauss quadratures is generally not optimal, and we discover a novel alternative decomposition for the 2D and 3D polynomial spaces of total degree up to 2 and 3, respectively, on Cartesian meshes. Our new decomposition allows a larger BP time step-size than the classic one, and moreover, it is rigorously proved to be optimal to attain the mildest BP CFL condition, yet requires much fewer nodes. The discovery of such an optimal convex decomposition is highly nontrivial yet meaningful, as it may lead to an improvement of high-order BP schemes for a large class of hyperbolic or convection-dominated equations, at the cost of only a slight and local modification to the implementation code. Several numerical examples are provided to further validate the advantages of using our optimal decomposition over the classic one in terms of efficiency

    A Diffuse-Domain Based Numerical Method for a Chemotaxis-Fluid Model

    Full text link
    In this paper, we consider a coupled chemotaxis-fluid system that models self-organized collective behavior of oxytactic bacteria in a sessile drop. This model describes the biological chemotaxis phenomenon in the fluid environment and couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier-Stokes equations subject to a gravitational force, which is proportional to the relative surplus of the cell density compared to the water density. We develop a new positivity preserving and high-resolution method for the studied chemotaxis-fluid system. Our method is based on the diffuse-domain approach, which we use to derive a new chemotaxis-fluid diffuse-domain (cf-DD) model for simulating bioconvection in complex geometries. The drop domain is imbedded into a larger rectangular domain, and the original boundary is replaced by a diffuse interface with finite thickness. The original chemotaxis-fluid system is reformulated on the larger domain with additional source terms that approximate the boundary conditions on the physical interface. We show that the cf-DD model converges to the chemotaxis-fluid model asymptotically as the width of the diffuse interface shrinks to zero. We numerically solve the resulting cf-DD system by a second-order hybrid finite-volume finite-difference method and demonstrate the performance of the proposed approach on a number of numerical experiments that showcase several interesting chemotactic phenomena in sessile drops of different shapes, where the bacterial patterns depend on the droplet geometries

    Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments

    Get PDF
    Traffic waves are phenomena that emerge when the vehicular density exceeds a critical threshold. Considering the presence of increasingly automated vehicles in the traffic stream, a number of research activities have focused on the influence of automated vehicles on the bulk traffic flow. In the present article, we demonstrate experimentally that intelligent control of an autonomous vehicle is able to dampen stop-and-go waves that can arise even in the absence of geometric or lane changing triggers. Precisely, our experiments on a circular track with more than 20 vehicles show that traffic waves emerge consistently, and that they can be dampened by controlling the velocity of a single vehicle in the flow. We compare metrics for velocity, braking events, and fuel economy across experiments. These experimental findings suggest a paradigm shift in traffic management: flow control will be possible via a few mobile actuators (less than 5%) long before a majority of vehicles have autonomous capabilities

    Tracking vehicle trajectories and fuel rates in phantom traffic jams: Methodology and data

    Get PDF
    International audienceHigh-fidelity vehicle trajectory data is becoming increasingly important in traffic modeling, especially to capture dynamic features such as stop-and-go waves. This article presents data collected in a series of eight experiments on a circular track with human drivers. The data contains smooth flowing and stop-and-go traffic conditions. The vehicle trajectories presented in this article are collected using a panoramic 360-degree camera, and fuel rate data is recorded via an on-board diagnostics scanner installed in each vehicle. The video data from the 360-degree camera is processed with an offline unsupervised algorithm to extract vehicle trajectories from experimental data. The trajectories are highly accurate, with a mean positional bias of less than 0.01 m and a standard deviation of 0.11 m. The velocities are also validated to be highly accurate with a bias of 0.02 m/s and standard deviation of 0.09 m/s. The source code and data used in this article are published with this work
    corecore