349 research outputs found

    The exploration on “Three-mode and One-line” heuristic teaching in the clinical teaching

    Get PDF
    探讨“三模一线”启发式教学在医学临床教学中的应用。充分发挥LBL(Lecture-Based Learning)、PBL(Problem-Based Learning)和CBL(Case- Based Learning)三种教学模式的优点,互相弥补不足,按照临床实践-理论总结-再到临床实践的这条主线,充分调动学生的积极性、主动性和创造性,促进学生密切联系临床实际,激发学生思考和解决问题等实践能力的培养,利于培养理论、实践技能兼备的高素质医学人才。To explore "Three-mode and One-line" heuristic teaching in clinical teaching. Using the three teaching modes including LBL (Lecture -based Learning), PBL (Problem -based Learning) and CBL (Case - -based Learning) in teaching activities ,which full played their advantages and compensated each other according to a common thread of clinical practice - theoretical summary - clinical practice. We fully mobilized students' enthusiasm, initiative and creativity to promote students theory closely into related clinical practice, stimulated students to think and solve problems such as the cultivation of practice ability. It is good for training high-quality medical personnel both in theory and practice skills

    Konstrukcija mutanta bakterije Zymomonas mobilis pomoću mjesno-specifične FLP rekombinaze

    Get PDF
    Flippase expression was carried out in Zymomonas mobilis strain ZM4. The FRT-flanked selection marker gene was first integrated into the ZM4 chromosome by homologous recombination. The Saccharomyces cerevisiae flp gene was then introduced under the control of the ZM4 gap gene promoter (Pgap, encoding glyceraldehyde-3-phosphate dehydrogenase) or the λ bacteriophage cI857-pR contained in the broad-host-range cloning vector pBBR1-MCS-2. This study demonstrated that flp was expressed and that the deletion frequency of the FRT-flanked marker gene was very high (approx. 100 %). In addition, the flp gene expression vector could be conveniently removed from the resulting unmarked Z. mobilis mutants by serially transferring the cells three times into antibiotic-free medium, thereby establishing an efficient method for constructing unmarked Z. mobilis mutants.U ovom je radu u soju bakterije bakterije Zymomonas mobilis ZM4 eksprimirana flipaza iz kvasca Saccharomyces cerevisiae. Najprije je homolognom rekombinacijom u bakterijski kromosom ugrađen selektivni biljeg omeđen FRT sekvencijama. Potom je u bakteriju unesen plazmid pBBR1MCS-2 koji sadrži kvaščev gen Flp pod regulacijom promotora gena gap iz soja ZM4 (Pgap, koji kodira za gliceraldehid-3-fosfat dehidrogenazu) ili cI857-PR iz bakteriofaga λ. Gen Flp uspješno je eksprimiran, te je učestalost gubitka selektivnog markera omeđenog FRT sekvencijama iznosila približno 100 %. Osim toga, vektor za ekspresiju gena Flp lako je uklonjen trostrukim precjepljivanjem na podlogu bez antibiotika, pa se može zaključiti da je razvijena učinkovita metoda za uklanjanje selektivnog biljega iz transformanata bakterije Zymomonas mobilis

    Surgical management of 142 cases of split cord malformations associated with osseous divide

    Get PDF
    Objectives To investigate the key surgical points in treating split cord malformations associated with osseous divide and scoliosis (SCM-OD-S). Materials and methods The surgical options and methods of a total of 142 SCM-OD-S cases were retrospectively analyzed, and the surgical precautions and imaging diagnosis were also discussed. Results The 142 patients were performed osseous divide resection plus dural sac molding, which achieved good results and no serious complication such as spinal cord and nerve injury occurred; certain symptoms such as urination-defecation disorders, muscle strength subsidence, Pes Cavus, and toe movement disorder in partial patients achieved various degrees of relief, and it also created good conditions for next-step treatment against scoliosis. Conclusions The diagnosis of SCM-OD mainly depended on imaging inspection, routine magnetic resonance imaging (MRI) combined with computed tomography (CT) 3D reconstruction, which can comprehensively evaluate the types and features of diastematomyelia as well as other concomitant diseases. SCM alone needed no treatment, but surgery will be the only means of treating SCM-OD. Intraoperatively removing osseous divide step-by-step, as well as carefully freeing the spinal cord and remodeling the dural sac, can lay good foundations for relieving tethered cord, improving neurological symptoms, and further scoliosis orthomorphia, thus particularly exhibiting importance for the growth and development of adolescents

    The Differentially Expressed Circular RNAs in the Substantia Nigra and Corpus Striatum of Nrf2-Knockout Mice

    Get PDF
    Background/Aims: The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a protective role in both acute neuronal damage and chronic neurodegeneration-related oxidative stress. Circular RNAs (circRNAs) are involved with various diseases in the central nervous system (CNS). This study aimed to identify the key circRNAs involved in Nrf2-neuroprotection against oxidative stress. Methods: The differentially expressed circRNAs (DEcircRNAs) in the substantia nigra and corpus striatum between Nrf2 (-/-) and Nrf2 (+/+) mice were identified by microarray analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was then used to validate the expression of selected DEcircRNAs in the substantia nigra and corpus striatum between Nrf2 (-/-) and Nrf2 (+/+) mice. Based on our previous microarray analysis of the differentially expressed mRNAs (DEmRNAs) in the substantia nigra and corpus striatum between Nrf2 (-/-) and Nrf2 (+/+) mice, the DEcircRNA-miRNA-DEmRNA interaction network was constructed. Functional annotation of DEmRNAs that shared the same binding miRNAs with DEcircRNAs was performed using gene ontology (GO) and pathway analyses. Results: A total of 65 and 150 significant DEcircRNAs were obtained in the substantia nigra and corpus striatum of Nrf2 (-/-) mice, respectively, and seventeen shared DEcircRNAs were found in both these two tissues. The qRT-PCR results were generally consistent with the microarray results. The DEcircRNA-miRNA-DEmRNA interaction network and pathway analysis indicated that mmu_circRNA_34132, mmu_circRNA_017077 and mmu-circRNA-015216 might be involved with Nrf2-mediated neuroprotection against oxidative stress. Mmu_circRNA_015216 and mmu_circRNA_017077 might play roles in the Nrf2-related transcriptional misregulation and Nrf2-mediated processes of rheumatoid arthritis, respectively. In addition to these two processes, mmu_circRNA_34132 may be a potential regulator of Nrf2-mediated protection for diabetes mellitus and Nrf2-mediated defence against ROS in hearts. Conclusion: In conclusion, our study identified the key DEcircRNAs in the substantia nigra and corpus striatum of Nrf2 (-/-) mice, which might provide new clues for further exploring the mechanism of Nrf2-mediated neuroprotection against oxidative stress and other Nrf2-mediated processes

    Mi-2β promotes immune evasion in melanoma by activating EZH2 methylation

    Get PDF
    Recent development of new immune checkpoint inhibitors has been particularly successfully in cancer treatment, but still the majority patients fail to benefit. Converting resistant tumors to immunotherapy sensitive will provide a significant improvement in patient outcome. Here we identify Mi-2β as a key melanoma-intrinsic effector regulating the adaptive anti-tumor immune response. Studies in genetically engineered mouse melanoma models indicate that loss of Mi-2β rescues the immune response to immunotherapy in vivo. Mechanistically, ATAC-seq analysis shows that Mi-2β controls the accessibility of IFN-γ-stimulated genes (ISGs). Mi-2β binds to EZH2 and promotes K510 methylation of EZH2, subsequently activating the trimethylation of H3K27 to inhibit the transcription of ISGs. Finally, we develop an Mi-2β-targeted inhibitor, Z36-MP5, which reduces Mi-2β ATPase activity and reactivates ISG transcription. Consequently, Z36-MP5 induces a response to immune checkpoint inhibitors in otherwise resistant melanoma models. Our work provides a potential therapeutic strategy to convert immunotherapy resistant melanomas to sensitive ones

    Effect of Low Power Laser Irradiation on the Ability of Cell Growth and Myogenic Differentiation of Myoblasts Cultured In Vitro

    Get PDF
    As a therapeutic modality, low power laser irradiation (LPLI) has been used clinically in the treatment of skeletal muscle injuries and other myopathic conditions, but the cellular and molecular mechanisms attributed to this therapy were still unclear. Myoblasts are a type of myogenic stem cells quiescence in mature skeletal muscle fibers and are considered as the source cells during the regenerating process. The purpose of this paper was to investigate the effects of LPLI on the proliferation and myogenic differentiation of the cultured myoblasts and to find out the major candidates responsible for LPLI-induced muscle regeneration in vivo. In this study, primary rat myoblasts were exposed to helium-neon (He-Ne) laser. Cell proliferation, differentiation, and the cellular responses to LPLI were monitored by using morphological observation and molecular biological methods. It was found that LPLI at a certain fluence could increase the cell growth potential for myoblasts and further induce more cells entering into S phase of the mitotic cycle as indicated by high levels of bromodeoxyuridine (BrdU) incorporation, while at the same time inhibiting their in vitro differentiation and decreasing the expression of myogenic regulatory genes to a certain extent. Taken together, these results provide experimental evidence for the clinical applications of LPLI in regenerating skeletal muscle

    Cobalt doped LaSrTiO3-delta as an anode catalyst: effect of Co nanoparticle precipitation on SOFCs operating on H2S-containing hydrogen

    Get PDF
    NSERC; National Nature Science Foundation of China [51072021]; China Scholarship CouncilThis article compares the effects of Co doping on phase structures and stability of lanthanum strontium titanate (LST) anodes and electrochemical measurements in solid oxide fuel cells (SOFCs) employing H2S-containing H-2 as fuel. The Co-doped LST (LSCT) with a perovskite structure was synthesized via a solid state approach, achieving excellent phase purity and refined particle size. The catalytic activity and electrochemical performance are significantly improved by introducing Co. A maximum power density of 300 mW cm(-2) was achieved at 900 degrees C with 5000 ppm H2S-H-2 in a fuel cell having a 300 mu m thick YSZ electrolyte. Trace amounts of metallic Co nanoparticles with sizes typically no larger than 10 nm in diameter were detected on the LSCT surface after reduction in H-2 at 900 degrees C. The nano-sized Co clusters could reduce the anode polarization resistance, as well as improve the cell performance, compared with undoped LST anodes. The LSCT anode catalyst was electrochemically stable in 5000 ppm H2S-H-2 during the test time at high operating temperature. The LSCT anode catalyst also had relatively high redox stability in reversible oxidation-reduction cycles

    Stimulative Effects of Low Intensity He-Ne Laser Irradiation on the Proliferative Potential and Cell-Cycle Progression of Myoblasts in Culture

    Get PDF
    Low intensity laser irradiation (LILI) was found to promote the regeneration of skeletal muscle in vivo but the cellular mechanisms are not fully understood. Myoblasts, normally quiescent and inactivated in adult skeletal muscle, are a type of myogenic progenitor cells and considered as the major candidates responsible for muscle regeneration. The aim of the present study was to study the effect of LILI on the growth potential and cell-cycle progression of the cultured myoblasts. Primary myoblasts isolated from rat hind legs were cultured in nutrient-deficient medium for 36 hours and then irradiated by helium-neon laser at a certain energy density. Immunohistochemical and flow cytometric analysis revealed that laser irradiation could increase the expression of cellular proliferation marker and the amount of cell subpopulations in the proliferative phase as compared with the nonirradiated control group. Meanwhile, the expressions of cell-cycle regulatory proteins in the laser-treated myoblasts were markedly upregulated as compared to the unirradiated cells, indicating that LILI could promote the reentry of quiescent myoblasts into the cell division cycle. These results suggest that LILI at certain fluences could promote their proliferation, thus contributing to the skeletal muscle regeneration following trauma and myopathic diseases

    Novel hypoxia-related gene signature for predicting prognoses that correlate with the tumor immune microenvironment in NSCLC

    Get PDF
    Background: Intratumoral hypoxia is widely associated with the development of malignancy, treatment resistance, and worse prognoses. The global influence of hypoxia-related genes (HRGs) on prognostic significance, tumor microenvironment characteristics, and therapeutic response is unclear in patients with non-small cell lung cancer (NSCLC).Method: RNA-seq and clinical data for NSCLC patients were derived from The Cancer Genome Atlas (TCGA) database, and a group of HRGs was obtained from the MSigDB. The differentially expressed HRGs were determined using the limma package; prognostic HRGs were identified via univariate Cox regression. Using the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression, an optimized prognostic model consisting of nine HRGs was constructed. The prognostic model’s capacity was evaluated by Kaplan‒Meier survival curve analysis and receiver operating characteristic (ROC) curve analysis in the TCGA (training set) and GEO (validation set) cohorts. Moreover, a potential biological pathway and immune infiltration differences were explained.Results: A prognostic model containing nine HRGs (STC2, ALDOA, MIF, LDHA, EXT1, PGM2, ENO3, INHA, and RORA) was developed. NSCLC patients were separated into two risk categories according to the risk score generated by the hypoxia model. The model-based risk score had better predictive power than the clinicopathological method. Patients in the high-risk category had poor recurrence-free survival in the TCGA (HR: 1.426; 95% CI: 0.997–2.042; p = 0.046) and GEO (HR: 2.4; 95% CI: 1.7–3.2; p < 0.0001) cohorts. The overall survival of the high-risk category was also inferior to that of the low-risk category in the TCGA (HR: 1.8; 95% CI: 1.5–2.2; p < 0.0001) and GEO (HR: 1.8; 95% CI: 1.4–2.3; p < 0.0001) cohorts. Additionally, we discovered a notable distinction in the enrichment of immune-related pathways, immune cell abundance, and immune checkpoint gene expression between the two subcategories.Conclusion: The proposed 9-HRG signature is a promising indicator for predicting NSCLC patient prognosis and may be potentially applicable in checkpoint therapy efficiency prediction

    Evaluation of Physicochemical and Antioxidant Properties of Peanut Protein Hydrolysate

    Get PDF
    Peanut protein and its hydrolysate were compared with a view to their use as food additives. The effects of pH, temperature and protein concentration on some of their key physicochemical properties were investigated. Compared with peanut protein, peanut peptides exhibited a significantly higher solubility and significantly lower turbidity at pH values 2–12 and temperature between 30 and 80°C. Peanut peptide showed better emulsifying capacity, foam capacity and foam stability, but had lower water holding and fat adsorption capacities over a wide range of protein concentrations (2–5 g/100 ml) than peanut protein isolate. In addition, peanut peptide exhibited in vitro antioxidant properties measured in terms of reducing power, scavenging of hydroxyl radical, and scavenging of DPPH radical. These results suggest that peanut peptide appeared to have better functional and antioxidant properties and hence has a good potential as a food additive
    corecore