7 research outputs found

    Coal transitions—part 1: a systematic map and review of case study learnings from regional, national, and local coal phase-out experiences

    Get PDF
    A rapid coal phase-out is needed to meet the goals of the Paris Agreement, but is hindered by serious challenges ranging from vested interests to the risks of social disruption. To understand how to organize a global coal phase-out, it is crucial to go beyond cost-effective climate mitigation scenarios and learn from the experience of previous coal transitions. Despite the relevance of the topic, evidence remains fragmented throughout different research fields, and not easily accessible. To address this gap, this paper provides a systematic map and comprehensive review of the literature on historical coal transitions. We use computer-assisted systematic mapping and review methods to chart and evaluate the available evidence on historical declines in coal production and consumption. We extracted a dataset of 278 case studies from 194 publications, covering coal transitions in 44 countries and ranging from the end of the 19th century until 2021. We find a relatively recent and rapidly expanding body of literature reflecting the growing importance of an early coal phase-out in scientific and political debates. Previous evidence has primarily focused on the United Kingdom, the United States, and Germany, while other countries that experienced large coal declines, like those in Eastern Europe, are strongly underrepresented. An increasing number of studies, mostly published in the last 5 years, has been focusing on China. Most of the countries successfully reducing coal dependency have undergone both demand-side and supply-side transitions. This supports the use of policy approaches targeting both demand and supply to achieve a complete coal phase-out. From a political economy perspective, our dataset highlights that most transitions are driven by rising production costs for coal, falling prices for alternative energies, or local environmental concerns, especially regarding air pollution. The main challenges for coal-dependent regions are structural change transformations, in particular for industry and labor. Rising unemployment is the most largely documented outcome in the sample. Policymakers at multiple levels are instrumental in facilitating coal transitions. They rely mainly on regulatory instruments to foster the transitions and compensation schemes or investment plans to deal with their transformative processes. Even though many models suggest that coal phase-outs are among the low-hanging fruits on the way to climate neutrality and meeting the international climate goals, our case studies analysis highlights the intricate political economy at work that needs to be addressed through well-designed and just policies.BMBF, 01LA1826A, Ökonomie des Klimawandels - Verbundprojekt: Die politische Ökonomie eines globalen Kohleausstiegs (PEGASOS) - Teilprojekt 1: Koordination, Analyse der politischen Ökonomie vergangener KohleausstiegeBMBF, 01LA1810A, Ökonomie des Klimawandels - Verbundprojekt: Die Zukunft fossiler Energieträger im Zuge von Treibhausgasneutralität (FFF) - Teilprojekt 1: Implementierung von AusstiegspfadenBMBF, 01LN1704A, Nachwuchsgruppe Globaler Wandel: CoalExit - Die Ökonomie des Kohleausstiegs - Identifikation von Bausteinen für Rahmenpläne zukünftiger regionaler StrukturwandelBMBF, 01LG1910A, Qualitätssicherung von IPCC-AR6: Chapter Scientist für WG III, Kapitel 2 (Emissions trends and drivers

    Regional responses to future, demand-driven water scarcity

    No full text
    This paper explores regional response strategies to potential water scarcity. Using a model of integrated human-earth system dynamics (GCAM), we test a wide range of alternate water demand scenarios to explore regional response strategies. We create a typology that categorizes countries and basins according to their responses in electricity and agriculture to potential water scarcity. Three different categories are found. First, little response is observed for many basins because water demands do not increase enough to create scarcity. Second, the primary response is adjustments in the electricity sector (e.g. most basins in Western Europe, the United States and China) with a transition to water-saving cooling systems but marginal impact on total power generation or the fuel mix. Third, where there is a lack of sufficient responding capacity in the electricity sector (e.g. Pakistan, Middle East and several basins in India), additional response occurs through reduced irrigation water withdrawals, either by switching from domestic production to imports or from irrigated agriculture to rain-fed production. The primary response mechanism to demand-based water scarcity for individual basins is quite robust across the range of water demand scenarios tested. The results and typology in this paper will be valuable for future research exploring global water scarcity due to both demand and supply drivers

    Pathways of China's PM2.5 air quality 2015-2060 in the context of carbon neutrality.

    No full text
    Clean air policies in China have substantially reduced particulate matter (PM2.5) air pollution in recent years, primarily by curbing end-of-pipe emissions. However, reaching the level of the World Health Organization (WHO) guidelines may instead depend upon the air quality co-benefits of ambitious climate action. Here, we assess pathways of Chinese PM2.5 air quality from 2015 to 2060 under a combination of scenarios that link global and Chinese climate mitigation pathways (i.e. global 2°C- and 1.5°C-pathways, National Determined Contributions (NDC) pledges and carbon neutrality goals) to local clean air policies. We find that China can achieve both its near-term climate goals (peak emissions) and PM2.5 air quality annual standard (35 Î¼g/m3) by 2030 by fulfilling its NDC pledges and continuing air pollution control policies. However, the benefits of end-of-pipe control reductions are mostly exhausted by 2030, and reducing PM2.5 exposure of the majority of the Chinese population to below 10 Î¼g/m3 by 2060 will likely require more ambitious climate mitigation efforts such as China's carbon neutrality goals and global 1.5°C-pathways. Our results thus highlight that China's carbon neutrality goals will play a critical role in reducing air pollution exposure to the level of the WHO guidelines and protecting public health

    Coal transitions—part 2: phase-out dynamics in global long-term mitigation scenarios

    No full text
    A rapid phase-out of unabated coal use is essential to limit global warming to below 2 °C. This review presents a comprehensive assessment of coal transitions in mitigation scenarios consistent with the Paris Agreement, using data from more than 1500 publicly available scenarios generated by more than 30 integrated assessment models. Our ensemble analysis uses clustering techniques to categorize coal transition pathways in models and bridges evidence on technological learning and innovation with historical data of energy systems. Six key findings emerge: First, we identify three archetypal coal transitions within Paris-consistent mitigation pathways. About 38% of scenarios are ‘coal phase out’ trajectories and rapidly reduce coal consumption to near zero. ‘Coal persistence’ pathways (42%) reduce coal consumption much more gradually and incompletely. The remaining 20% follow ‘coal resurgence’ pathways, characterized by increased coal consumption in the second half of the century. Second, coal persistence and resurgence archetypes rely on the widespread availability and rapid scale-up of carbon capture and storage technology (CCS). Third, coal-transition archetypes spread across all levels of climate policy ambition and scenario cycles, reflecting their dependence on model structures and assumptions. Fourth, most baseline scenarios—including the shared socio-economic pathways (SSPs)—show much higher coal dependency compared to historical observations over the last 60 years. Fifth, coal-transition scenarios consistently incorporate very optimistic assumptions about the cost and scalability of CCS technologies, while being pessimistic about the cost and scalability of renewable energy technologies. Sixth, evaluation against coal-dependent baseline scenarios suggests that many mitigation scenarios overestimate the technical difficulty and costs of coal phase-outs. To improve future research, we recommend using up-to-date cost data and evidence about innovation and diffusion dynamics of different groups of zero or low-carbon technologies. Revised SSP quantifications need to incorporate projected technology learning and consistent cost structures, while reflecting recent trends in coal consumption

    Global biomass supply modeling for long-run management of the climate system

    Get PDF
    Bioenergy is projected to have a prominent, valuable, and maybe essential, role in climate management. However, there is significant variation in projected bioenergy deployment results, as well as concerns about the potential environmental and social implications of supplying biomass. Bioenergy deployment projections are market equilibrium solutions from integrated modeling, yet little is known about the underlying modeling of the supply of biomass as a feedstock for energy use in these modeling frameworks. We undertake a novel diagnostic analysis with ten global models to elucidate, compare, and assess how biomass is supplied within the models used to inform long-run climate management. With experiments that isolate and reveal biomass supply modeling behavior and characteristics (costs, emissions, land use, market effects), we learn about biomass supply tendencies and differences. The insights provide a new level of modeling transparency and understanding of estimated global biomass supplies that informs evaluation of the potential for bioenergy in managing the climate and interpretation of integrated modeling. For each model, we characterize the potential distributions of global biomass supply across regions and feedstock types for increasing levels of quantity supplied, as well as some of the potential societal externalities of supplying biomass. We also evaluate the biomass supply implications of managing these externalities. Finally, we interpret biomass market results from integrated modeling in terms of our new understanding of biomass supply. Overall, we find little consensus between models on where biomass could be cost-effectively produced and the implications. We also reveal model specific biomass supply narratives, with results providing new insights into integrated modeling bioenergy outcomes and differences. The analysis finds that many integrated models are considering and managing emissions and land use externalities of supplying biomass and estimating that environmental and societal trade-offs in the form of land emissions, land conversion, and higher agricultural prices are cost-effective, and to some degree a reality of using biomass, to address climate change

    Global biomass supply modeling for long-run management of the climate system

    No full text
    Bioenergy is projected to have a prominent, valuable, and maybe essential, role in climate management. However, there is significant variation in projected bioenergy deployment results, as well as concerns about the potential environmental and social implications of supplying biomass. Bioenergy deployment projections are market equilibrium solutions from integrated modeling, yet little is known about the underlying modeling of the supply of biomass as a feedstock for energy use in these modeling frameworks. We undertake a novel diagnostic analysis with ten global models to elucidate, compare, and assess how biomass is supplied within the models used to inform long-run climate management. With experiments that isolate and reveal biomass supply modeling behavior and characteristics (costs, emissions, land use, market effects), we learn about biomass supply tendencies and differences. The insights provide a new level of modeling transparency and understanding of estimated global biomass supplies that informs evaluation of the potential for bioenergy in managing the climate and interpretation of integrated modeling. For each model, we characterize the potential distributions of global biomass supply across regions and feedstock types for increasing levels of quantity supplied, as well as some of the potential societal externalities of supplying biomass. We also evaluate the biomass supply implications of managing these externalities. Finally, we interpret biomass market results from integrated modeling in terms of our new understanding of biomass supply. Overall, we find little consensus between models on where biomass could be cost-effectively produced and the implications. We also reveal model specific biomass supply narratives, with results providing new insights into integrated modeling bioenergy outcomes and differences. The analysis finds that many integrated models are considering and managing emissions and land use externalities of supplying biomass and estimating that environmental and societal trade-offs in the form of land emissions, land conversion, and higher agricultural prices are cost-effective, and to some degree a reality of using biomass, to address climate change
    corecore