29 research outputs found
How Does the Overall Perceived Platform Quality Affect Consumers\u27 Willingness to Pay for Online Health Platform? A Perspective of Updated IS Success Model
How to motivate patients to purchase paid online health platform is important to the profitability of a platform operator. Based on updated IS success model, this paper establishes a research model to investigate the effects of perceived platform quality (including platform service quality, information quality and system quality) and consultation service quality (including consultation service benefit and consultation service risk) on consumers\u27 willingness to pay (WTP). Using SPSS and Smart PLS, we analyzed 409 data from an online health service platform in China. The results showed that perceived platform quality and consultation service benefit were positively correlated with consumers\u27 WTP. Conversely, consultation service risk affected consumers\u27 WTP negatively. Our study promotes the research from consumers\u27 using intention to consumers\u27 willingness to pay, as well as provides a guideline to help operators of online health platforms improve user payment rates
An Improved SNR Estimator for Wireless OFDM Systems
AbstractSNR is a crucial parameter for OFDM system and the assistant technology thereof such as Turbo coding, channel equalization. In this paper, we propose an improved SNR estimator which can be applied for the pilot structure in 3GPP standard. The modified second order moments of the pilot points after FFT are used to estimate noise variance in OFDM packets. The channel frequency responses of four subcarriers from adjacent two pilot points in distinct symbols could be used to inhibit the channel fading. Simulation results show that the proposed algorithm is robust to frequency selectivity and time selectivity in wireless channels, and its performance is considerably improved compared with the available methods
Vegetation Dynamics and Their Response to Climatic Variability in China
Based on SPOT VEGETATION data and meteorological data, NDVI (Normalized Difference Vegetation Index) and its response to temperature and precipitation in China and its different regions were investigated over the period 1998–2013 by using the maximum value composite and linear regression methods. The results showed that NDVI presented significant increase (0.0046/a) for all of China and all the regions over the last 16 years. Meanwhile, annual mean temperature of China presented a slightly increasing trend, while the annual precipitation showed a slightly decreasing trend over the last 16 years. Nevertheless, there were differences between temperature and precipitation in the subregions of China. The Annual NDVI had better relationships with precipitation (r=0.126) compared to temperature (r=-0.094), and NDVI also had a good correlation with precipitation rather than temperature in different subregions of China. Additionally, human activities also made a difference to the trends of NDVI in some regions. This study is conductive to the effects of climate change on vegetation activity in future research
Prevalence and spectrum of BRCA germline variants in mainland Chinese familial breast and ovarian cancer patients.
Germline mutations in BRCA1 and BRCA2 are the most penetrating genetic predispositions for breast and ovarian cancer, and their presence is largely ethnic-specific. Comprehensive information about the prevalence and spectrum of BRCA mutations has been collected in European and North American populations. However, similar information is lacking in other populations, including the mainland Chinese population despite its large size of 1.4 billion accounting for one fifth of the world\u27s population. Herein, we performed an extensive literature analysis to collect BRCA variants identified from mainland Chinese familial breast and ovarian cancer patients. We observed 137 distinct BRCA1 variants in 409 of 3,844 and 80 distinct BRCA2 variants in 157 of 3,024 mainland Chinese patients, with an estimated prevalence of 10.6% for BRCA1 and 5.2% for BRCA2. Of these variants, only 40.3% in BRCA1 and 42.5% in BRCA2 are listed in current Breast Cancer Information Core database. We observed higher frequent variation in BRCA1 exons 11A, 11C, 11D, and 24 and BRCA2 exon 10 in Chinese patients than in the patients of other populations. The most common pathogenic variant in BRCA1 wasc.981_982delAT in exon 11A, and in BRCA2 c.3195_3198delTAAT in exon 11B and c.5576_5579delTTAA in exon 11E; the most common novel variant in BRCA1 was c.919A\u3eG in exon 10A, and in BRCA2 c.7142delC in exon 14. None of the variants overlap with the founder mutations in other populations. Our analysis indicates that the prevalence of BRCA variation in mainland Chinese familial breast and ovarian cancer patients is at a level similar to but the spectrum is substantially different from the ones of other populations
Recommended from our members
A new model to downscale urban and rural surface and air temperatures evaluated in Shanghai, China
A simple model, TsT2m (Surface Temperature and near surface air Temperature (at 2 m) model), is developed to downscale numerical model output (such as from ECMWF) to obtain higher temporal and spatial resolution surface and near surface air temperature. It is evaluated in Shanghai, China. Surface temperature (TS) and near surface air temperature (Ta) sub-models account for variations in land covers and their different thermal properties, resulting in spatial variations of surface and air temperature. The Net All Wave Radiation Parameterization (NARP) scheme is used to compute net wave radiation for the surface temperature sub-model, the Objective Hysteresis Model (OHM) is used to calculate the net storage heat fluxes, and the surface temperature is obtained by the force-restore method. The near surface air temperature sub-model considers the horizontal and vertical energy changes for a column of well mixed air above the surface. Modeled surface temperatures reproduce the general pattern of MODIS images well, while providing more detailed patterns of the surface urban heat island. However, the simulated surface temperatures capture the warmer urban land cover and are 10.3°C warmer on average than those derived from the coarser MODIS data. For other land cover types values are more similar. Downscaled, higher temporal and spatial resolution air temperatures are compared to observations at 110 Automatic Weather Stations across Shanghai. After downscaling with the TsT2m model, the average forecast accuracy of near surface air temperature is improved by about 20%. The scheme developed has considerable potential for prediction and mitigation of urban climate conditions, particularly for weather and climate services related to heat stres
Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst
The recently discovered neutron star transient Swift J0243.6+6124 has been
monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT).
Based on the obtained data, we investigate the broadband spectrum of the source
throughout the outburst. We estimate the broadband flux of the source and
search for possible cyclotron line in the broadband spectrum. No evidence of
line-like features is, however, found up to . In the absence of
any cyclotron line in its energy spectrum, we estimate the magnetic field of
the source based on the observed spin evolution of the neutron star by applying
two accretion torque models. In both cases, we get consistent results with
, and peak luminosity of which makes the source the first Galactic ultraluminous
X-ray source hosting a neutron star.Comment: publishe
Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite
As China's first X-ray astronomical satellite, the Hard X-ray Modulation
Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15,
2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy
satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was
designed to perform pointing, scanning and gamma-ray burst (GRB) observations
and, based on the Direct Demodulation Method (DDM), the image of the scanned
sky region can be reconstructed. Here we give an overview of the mission and
its progresses, including payload, core sciences, ground calibration/facility,
ground segment, data archive, software, in-orbit performance, calibration,
background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech.
Astron. arXiv admin note: text overlap with arXiv:1910.0443
Change and relationship between growing season metrics and net primary productivity in forestland and grassland in China
Abstract Background Vegetation phenology can characterize ecosystem functions and plays a key role in the dynamics of plant productivity. Here we investigated the changes in growing season metrics (start of growing season, SOS; end of growing season, EOS; length of growing season, LOS) and their relationships with net primary productivity (NPP) in forestland and grassland in China during 1981–2016. Results SOS advanced, EOS delayed, LOS prolonged and NPP increased significantly in 23.7%, 21.0%, 40.5% and 19.9% of the study areas, with an average rate of 3.9 days decade−1, 3.3 days·decade−1, 6.7 days·decade−1 and 10.7 gC m−2·decade−1, respectively. The changes in growing season metrics were obvious in Northwest China (NWC) and North China (NC), but the least in Northeast China (NEC). NPP was negatively correlated with SOS and positively correlated with EOS and LOS in 22.0%, 16.3% and 22.8% of the study areas, respectively, and the correlation between NPP and growing season metrics was strong in NWC, NC and Southwest China (SWC), but weak in NEC and South China (SC). Conclusion The advanced SOS, delayed EOS and prolonged LOS all contribute to the increased NPP in forestland and grassland in China, especially in NWC, NC and SWC. This study also highlights the need to further study the response of NPP to growing season changes in different regions and under the influence of multiple factors
A Comparison of Thermal Growing Season Indices for the Northern China during 1961–2015
Vegetation phenology is one of the most direct and sensitive indicators of terrestrial ecosystem in response to climate change. Based on daily mean air temperature at 877 meteorological stations over northern China from 1961 to 2015, the correlations and differences for different definitions of the growing season parameters (start, end, and length of the growing season) were investigated, and results show that higher correlations of 0.81–0.93 are found when indices which do not consider frost are compared with those of the same length which include the frost criteria, and lower correlations of 0.63–0.79 are observed when the length of indices is different and one of the indices includes the frost criteria or EI 3 (10 d < 5°C) is included. Lower correlations and larger differences are generally observed in the eastern and northwestern parts while higher correlation and smaller difference appeared in the northeastern and southwestern parts of northern China; thus the applicability comparison and selection of different definitions have important influence on the identifying and counting of the timing and length of the growing season in the eastern and northwestern regions of northern China