5 research outputs found

    CHANGES OF CLIMATE ZONES AND THEIR IMPLICATIONS FOR BIODIVERSITY

    Get PDF
    Climate change is driving biodiversity redistribution on Earth, undermining the effectiveness of protected areas (PAs) in conserving global biodiversity. Managing the consequences of biodiversity redistribution and promoting effective conservation necessitates a better understanding of climate shift patterns and species’ ability to track changing climates. Recent studies assessing the effects of climate change on biodiversity have increasingly used velocity metrics to represent climate shifts over space and time. Velocity based on a single climate variable or climate space identified using statistically combined multivariate indices may not be related to biomes or ecosystems and lacks the potential to conduct risk evaluation for biodiversity. The widely used Köppen–Geiger classification scheme provides an effective way to characterize bioclimatic conditions by incorporating multiple climatic indicators and biological information, thus can be a new direction for developing velocity metrics and supporting the development of species distribution models (SDMs). To identify research gaps, this dissertation research first reviews recent detection and assessment studies on past and future projected climate zone changes. Previous studies have shown that accelerated global warming since the 1980s has resulted in changes in climate zones that have been observed over 5% of the global land area. Tropical and arid climate zones are expected to expand into mid and high latitudes, while polar climates are shifting poleward and upward, leading to significant area shrinkage. Given the need for improved historical and future global climate maps with long-term temporal coverage and accurate depiction of fine-grained bioclimatic conditions in climate change studies, the study creates a set of 1 km Köppen-Geiger climate classification maps (KGClim) for six historical periods in 1979–2013 and four future periods in 2020–2099 under RCP2.6, 4.5, 6.0, and 8.5. The new maps offer higher classification accuracy than existing datasets and demonstrate the ability to capture recent and future projected changes in distribution of climate zones. Using the new KGClim dataset, this dissertation calculates the velocity of climate zone shifts to assess exposure risks of global PAs and examines the spatial patterns of near-, mid- and long-term climate shifts projected based on different emission pathways. Based on the findings, under RCP8.5, 38% of global protected land could undergo climate zone shifts at accelerating rates for the remainder of this century. Furthermore, global protected lands are experiencing novel (8% of global protected land) and disappearing (7%) climates, shifts of climates outside current PA networks (8%), and transition to human-dominated land use (6%). The fine-scale velocity metrics reveal spatiotemporal patterns of climate shifts and biodiversity redistribution, which can inform adaptive conservation planning to address the ongoing biodiversity crisis and achieve future conservation goals

    Coal transitions—part 1: a systematic map and review of case study learnings from regional, national, and local coal phase-out experiences

    Get PDF
    A rapid coal phase-out is needed to meet the goals of the Paris Agreement, but is hindered by serious challenges ranging from vested interests to the risks of social disruption. To understand how to organize a global coal phase-out, it is crucial to go beyond cost-effective climate mitigation scenarios and learn from the experience of previous coal transitions. Despite the relevance of the topic, evidence remains fragmented throughout different research fields, and not easily accessible. To address this gap, this paper provides a systematic map and comprehensive review of the literature on historical coal transitions. We use computer-assisted systematic mapping and review methods to chart and evaluate the available evidence on historical declines in coal production and consumption. We extracted a dataset of 278 case studies from 194 publications, covering coal transitions in 44 countries and ranging from the end of the 19th century until 2021. We find a relatively recent and rapidly expanding body of literature reflecting the growing importance of an early coal phase-out in scientific and political debates. Previous evidence has primarily focused on the United Kingdom, the United States, and Germany, while other countries that experienced large coal declines, like those in Eastern Europe, are strongly underrepresented. An increasing number of studies, mostly published in the last 5 years, has been focusing on China. Most of the countries successfully reducing coal dependency have undergone both demand-side and supply-side transitions. This supports the use of policy approaches targeting both demand and supply to achieve a complete coal phase-out. From a political economy perspective, our dataset highlights that most transitions are driven by rising production costs for coal, falling prices for alternative energies, or local environmental concerns, especially regarding air pollution. The main challenges for coal-dependent regions are structural change transformations, in particular for industry and labor. Rising unemployment is the most largely documented outcome in the sample. Policymakers at multiple levels are instrumental in facilitating coal transitions. They rely mainly on regulatory instruments to foster the transitions and compensation schemes or investment plans to deal with their transformative processes. Even though many models suggest that coal phase-outs are among the low-hanging fruits on the way to climate neutrality and meeting the international climate goals, our case studies analysis highlights the intricate political economy at work that needs to be addressed through well-designed and just policies.BMBF, 01LA1826A, Ökonomie des Klimawandels - Verbundprojekt: Die politische Ökonomie eines globalen Kohleausstiegs (PEGASOS) - Teilprojekt 1: Koordination, Analyse der politischen Ökonomie vergangener KohleausstiegeBMBF, 01LA1810A, Ökonomie des Klimawandels - Verbundprojekt: Die Zukunft fossiler Energieträger im Zuge von Treibhausgasneutralität (FFF) - Teilprojekt 1: Implementierung von AusstiegspfadenBMBF, 01LN1704A, Nachwuchsgruppe Globaler Wandel: CoalExit - Die Ökonomie des Kohleausstiegs - Identifikation von Bausteinen für Rahmenpläne zukünftiger regionaler StrukturwandelBMBF, 01LG1910A, Qualitätssicherung von IPCC-AR6: Chapter Scientist für WG III, Kapitel 2 (Emissions trends and drivers

    Additional file 1 of Associations of bullying perpetration and peer victimization subtypes with preadolescent’s suicidality, non-suicidal self-injury, neurocognition, and brain development

    No full text
    Additional file 1: Table S1. ABCD data release 4.0 variables used in current analysis. Figure S1. Flowchart indicating exclusions for primary analyses. Table S2. Demographic characteristics of the analyzed samples. Table S3. Associations of peer bullying subtypes with suicidality/NSSI in preadolescents. Table S4. Associations of peer bullying subtypes with cognition in preadolescents. Table S5. Associations between peer bullying and brain structure. Table S6. Associations between peer bullying and brain network

    Acupuncture Enhances Communication between Cortices with Damaged White Matters in Poststroke Motor Impairment

    No full text
    Stroke is a leading cause of motor disability. Acupuncture is an effective therapeutic strategy for poststroke motor impairment. However, its mechanism is still elusive. Twenty-two stroke patients having a right-hemispheric subcortical infarct and 22 matched healthy controls were recruited to undergo diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) scanning. The resting-state fMRI was implemented before and after needling at GB34 (Yanglingquan). The stroke patients presented a substantially reduced fractional anisotropy value in the right superior longitudinal fasciculus (SLF), corticospinal tract, and corpus callosum. The structural integrity of the frontoparietal part of the SLF (SLF-FP) correlated with the motor scores of lower limbs in stroke patients. This corticocortical association bundle originated from the premotor cortex (PM) and the adjacent supplementary motor area (SMA), known as secondary motor areas, and terminated in the supramarginal gyrus (SMG). After acupuncture intervention, the corresponding functional connectivity between the PM/SMA and SMG was enhanced in stroke patients compared with healthy controls. These findings suggested that the integrity of the SLF is a potential neuroimaging biomarker for motor disability of lower limbs following a stroke. Acupuncture could increase the communication between the cortices connected by the impaired white matter tracts, implying the neural mechanism underlying the acupuncture intervention
    corecore