41 research outputs found

    Cost-Efficient and Easy to Perform PCR-Based Assay to Identify Met Exon 14 Skipping in Formalin-Fixed Paraffin-Embedded (FFPE) Non-Small Cell Lung Cancer (NSCLC) Samples

    Get PDF
    MET is a receptor tyrosine kinase (RTK) that plays important roles in carcinogenesis. Despite being frequently overexpressed in cancer, clinical responses to targeting this receptor have been limited. Recently novel splicing mutations involving the loss of exon 14 (called METex14 skipping) have emerged as potential biomarkers to predict for responsiveness to targeted therapies with Met inhibitors in non-small cell lung cancer (NSCLC). Currently, the diverse genomic alterations responsible for METex14 skipping pose a challenge for routine clinical diagnostic testing. In this report, we examine three different methodologies to detect METex14 and assess their potential utility for use as a diagnostic assay for both the identification of METex14 and intra-tumoural distribution in NSCLC

    Increased Autonomic Reactivity and Mental Health Difficulties in COVID-19 Survivors: Implications for Medical Providers

    Get PDF
    Background Because there is a relationship between mental health (MH) and medical adversity and autonomic dysregulation, we hypothesized that individuals infected with COVID-19 would report greater current autonomic reactivity and more MH difficulties (emotional distress, mindfulness difficulties, and posttraumatic stress). We also hypothesized that individuals diagnosed with COVID-19 who are experiencing difficulties related to their prior adversity and those providing medical care to COVID-19 patients would be more negatively impacted due to their increased stress and infection rates. Method US participants (N = 1,638; 61% female; Age M = 46.80) completed online self-report measures of prior adversity, current autonomic reactivity and current MH difficulties, and COVID-19 diagnosis history. Participants diagnosed with COVID-19 (n = 98) were more likely to be younger and providing medical care to COVID-19 patients. Results Individuals diagnosed with COVID-19 reported increased current autonomic reactivity, being more negatively impacted by their prior MH/medical adversities, and currently experiencing more MH difficulties with an increased likelihood of clinically-significant PTSD and depression (p < 0.01 – p < 0.001). Current autonomic reactivity mediated 58.9% to 85.2% of the relationship between prior adversity and current MH difficulties; and COVID-19 diagnosis moderated and enhanced the effect of prior adversity on current autonomic reactivity (p < 0.01). Being a medical provider was associated with increased current autonomic reactivity (p < 0.01), while moderating and enhancing the relationship between current autonomic reactivity and emotional distress and posttraumatic stress symptoms (p < 0.05). Combining COVID-19 diagnosis with being a medical provider increased likelihood of clinically-significant PTSD and depression (p < 0.01). Conclusion Individuals diagnosed with COVID-19, particularly medical providers, have increased current autonomic reactivity that is associated with their prior adversities and current MH difficulties

    Altered Expression of ACOX2 In Non-Small Cell Lung Cancer

    Get PDF
    Peroxisomes are organelles that play essential roles in many metabolic processes, but also play roles in innate immunity, signal transduction, aging and cancer. One of the main functions of peroxisomes is the processing of very-long chain fatty acids into metabolites that can be directed to the mitochondria. One key family of enzymes in this process are the peroxisomal acyl-CoA oxidases (ACOX1, ACOX2 and ACOX3), the expression of which has been shown to be dysregulated in some cancers. Very little is however known about the expression of this family of oxidases in non-small cell lung cancer (NSCLC). ACOX2 has however been suggested to be elevated at the mRNA level in over 10% of NSCLC, and in the present study using both standard and bioinformatics approaches we show that expression of ACOX2 is significantly altered in NSCLC. ACOX2 mRNA expression is linked to a number of mutated genes, and associations between ACOX2 expression and tumour mutational burden and immune cell infiltration were explored. Links between ACOX2 expression and candidate therapies for oncogenic driver mutations such as KRAS were also identified. Furthermore, levels of acyl-CoA oxidases and other associated peroxisomal genes were explored to identify further links between the peroxisomal pathway and NSCLC. The results of this biomarker driven study suggest that ACOX2 may have potential clinical utility in the diagnosis, prognosis and stratification of patients into various therapeutically targetable options

    An Analysis of JADE2 in Non-Small Cell Lung Cancer (NSCLC)

    Get PDF
    The JADE family comprises three members encoded by individual genes and roles for these proteins have been identified in chromatin remodeling, cell cycle progression, cell regeneration and the DNA damage response. JADE family members, and in particular JADE2 have not been studied in any great detail in cancer. Using a series of standard biological and bioinformatics approaches we investigated JADE2 expression in surgically resected non-small cell lung cancer (NSCLC) for both mRNA and protein to examine for correlations between JADE2 expression and overall survival. Additional correlations were identified using bioinformatic analyses on multiple online datasets. Our analysis demonstrates that JADE2 expression is significantly altered in NSCLC. High expression of JADE2 is associated with a better 5-year overall survival. Links between JADE2 mRNA expression and a number of mutated genes were identified, and associations between JADE2 expression and tumor mutational burden and immune cell infiltration were explored. Potential new drugs that can target JADE2 were identified. The results of this biomarker-driven study suggest that JADE2 may have potential clinical utility in the diagnosis, prognosis and stratification of patients into various therapeutically targetable options

    Expression of phosphorylated ribosomal protein S6 in mesothelioma patients - correlation with clinico-pathological characteristics and outcome: results from the European Thoracic Oncology Platform (ETOP) Mesoscape project

    Full text link
    Pleural mesothelioma (PM) is an aggressive malignancy with poor prognosis. Although histology and pathologic stage are important prognostic factors, better prognostic biomarkers are needed. The ribosomal protein S6 is a downstream target of the phosphatidylinositol 3-kinase (PI3K) pathway involved in protein synthesis and cell proliferation. In previous studies, low phosphorylated S6 (pS6) immunoreactivity was significantly correlated with longer progression-free survival (PFS) and overall survival (OS) in PM patients. We aimed to correlate pS6 expression to clinical data in a large multi-centre PM cohort as part of the European Thoracic Oncology Platform (ETOP) Mesoscape project. Tissue Micro Arrays (TMAs) of PM were constructed and expression of pS6 was evaluated by a semiquantitatively aggregate H-score. Expression results were correlated to patient characteristics as well as OS/PFS. pS6 IHC results of 364 patients from 9 centres, diagnosed between 1999 and 2017 were available. The primary histology of included tumours was epithelioid (70.3%), followed by biphasic (24.2%) and sarcomatoid (5.5%). TMAs included both treatment-naive and tumour tissue taken after induction chemotherapy. High pS6 expression (181 patients with H-score>1.41) was significantly associated with less complete resection. In the overall cohort, OS/PFS were not significantly different between pS6-low and pS6-high patients. In a subgroup analysis nonepithelioid (biphasic and sarcomatoid) patients with high pS6 expression showed a significantly shorter OS (p< 0.001, 10.7 versus 16.9 months) and PFS (p < 0.001, 6.2 versus 10.8 months). In subgroup analysis, in non-epithelioid PM patients high pS6 expression was associated with significantly shorter OS and PFS. These exploratory findings suggest a clinically relevant PI3K pathway activation in non-epithelioid PM which might lay the foundation for future targeted treatment strategies

    When RON MET TAM in Mesothelioma: All Druggable for One, and One Drug for All?

    Get PDF
    Malignant pleural mesothelioma (MPM) is an aggressive inflammatory cancer with a poor survival rate. Treatment options are limited at best and drug resistance is common. Thus, there is an urgent need to identify novel therapeutic targets in this disease in order to improve patient outcomes and survival times. MST1R (RON) is a trans-membrane receptor tyrosine kinase (RTK), which is part of the c-MET proto-oncogene family. The only ligand recognized to bind MST1R (RON) is Macrophage Stimulating 1 (MST1), also known as Macrophage Stimulating Protein (MSP) or Hepatocyte Growth Factor-Like Protein (HGFL). In this study, we demonstrate that the MST1-MST1R (RON) signaling axis is active in MPM. Targeting this pathway with a small molecule inhibitor, LCRF-0004, resulted in decreased proliferation with a concomitant increase in apoptosis. Cell cycle progression was also affected. Recombinant MST1 treatment was unable to overcome the effect of LCRF-0004 in terms of either proliferation or apoptosis. Subsequently, the effect of an additional small molecular inhibitor, BMS-777607 (which targets MST1R (RON), MET, Tyro3, and Axl) also resulted in a decreased proliferative capacity of MPM cells. In a cohort of MPM patient samples, high positivity for total MST1R by IHC was an independent predictor of favorable prognosis. Additionally, elevated expression levels of MST1 also correlated with better survival. This study also determined the efficacy of LCRF-0004 and BMS-777607 in xenograft MPM models. Both LCRF-0004 and BMS-777607 demonstrated significant anti-tumor efficacy in vitro, however BMS-777607 was far superior to LCRF-0004. The in vivo and in vitro data generated by this study indicates that a multi-TKI, targeting the MST1R/MET/TAM signaling pathways, may provide a more effective therapeutic strategy for the treatment of MPM as opposed to targeting MST1R alone

    The Last Witness: The Child Survivor of the Holocaust

    No full text

    US Suicide Rates by Age Group, 1970–2002: An Examination of Recent Trends

    No full text
    US suicide rates have declined in recent years, reversing earlier trends. We examined suicide rates among 4 age groups from 1970 to 2002 and the factors that may have contributed to the decline. We paid particular attention to newer anti-depressants because of recent concerns and controversy about a possible association with suicidal behaviors. These trends warrant more extensive analysis of suicide rates among specific subgroups, including consideration of additional variables that may influence rates differentially. The relative contributions of depression diagnosis and treatment, postsuicide attempt care, and other contextual factors (e.g., overall economic conditions) also deserve attention. If the decline is associated with contextual factors, clarifying these associations will better inform public policy decisions and contribute to more effective interventions for preventing suicide

    Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells

    No full text
    Epithelial mesenchymal transition (EMT), the adoption by epithelial cells of a mesenchymal-like phenotype, is a process co-opted by carcinoma cells in order to initiate invasion and metastasis. In addition, it is becoming clear that is instrumental to both the development of drug resistance by tumour cells and in the generation and maintenance of cancer stem cells. EMT is thus a pivotal process during tumour progression and poses a major barrier to the successful treatment of cancer. Non-coding RNAs (ncRNA) often utilize epigenetic programs to regulate both gene expression and chromatin structure. One type of ncRNA, called long non-coding RNAs (lncRNAs), has become increasingly recognized as being both highly dysregulated in cancer and to play a variety of different roles in tumourigenesis. Indeed, over the last few years, lncRNAs have rapidly emerged as key regulators of EMT in cancer. In this review, we discuss the lncRNAs that have been associated with the EMT process in cancer and the variety of molecular mechanisms and signalling pathways through which they regulate EMT, and finally discuss how these EMT-regulating lncRNAs impact on both anti-cancer drug resistance and the cancer stem cell phenotype
    corecore