32 research outputs found

    Levy-Student Distributions for Halos in Accelerator Beams

    Get PDF
    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the Stochastic Mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Shchr\"odinger--like (\Sl) equation. The space charge effects have been introduced in a recent paper~\cite{prstab} by coupling this \Sl equation with the Maxwell equations. We analyze the space charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self--consistent solutions are related to the (external, and space--charge) potentials both when we suppose that the external field is harmonic (\emph{constant focusing}), and when we \emph{a priori} prescribe the shape of the stationary solution. We then proceed to discuss a few new ideas~\cite{epac04} by introducing the generalized Student distributions, namely non--Gaussian, L\'evy \emph{infinitely divisible} (but not \emph{stable}) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non--Gaussian) L\'evy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the L\'evy--Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.Comment: revtex4, 18 pages, 12 figure

    L\'evy-Schr\"odinger wave packets

    Full text link
    We analyze the time--dependent solutions of the pseudo--differential L\'evy--Schr\"odinger wave equation in the free case, and we compare them with the associated L\'evy processes. We list the principal laws used to describe the time evolutions of both the L\'evy process densities, and the L\'evy--Schr\"odinger wave packets. To have self--adjoint generators and unitary evolutions we will consider only absolutely continuous, infinitely divisible L\'evy noises with laws symmetric under change of sign of the independent variable. We then show several examples of the characteristic behavior of the L\'evy--Schr\"odinger wave packets, and in particular of the bi-modality arising in their evolutions: a feature at variance with the typical diffusive uni--modality of both the L\'evy process densities, and the usual Schr\"odinger wave functions.Comment: 41 pages, 13 figures; paper substantially shortened, while keeping intact examples and results; changed format from "report" to "article"; eliminated Appendices B, C, F (old names); shifted Chapters 4 and 5 (old numbers) from text to Appendices C, D (new names); introduced connection between Relativistic q.m. laws and Generalized Hyperbolic law

    Quantum Mechanical Interaction-Free Measurements

    Full text link
    A novel manifestation of nonlocality of quantum mechanics is presented. It is shown that it is possible to ascertain the existence of an object in a given region of space without interacting with it. The method might have practical applications for delicate quantum experiments.Comment: (revised file with no need for macro), 12, TAUP 1865-91

    Mixtures in non stable Levy processes

    Get PDF
    We analyze the Levy processes produced by means of two interconnected classes of non stable, infinitely divisible distribution: the Variance Gamma and the Student laws. While the Variance Gamma family is closed under convolution, the Student one is not: this makes its time evolution more complicated. We prove that -- at least for one particular type of Student processes suggested by recent empirical results, and for integral times -- the distribution of the process is a mixture of other types of Student distributions, randomized by means of a new probability distribution. The mixture is such that along the time the asymptotic behavior of the probability density functions always coincide with that of the generating Student law. We put forward the conjecture that this can be a general feature of the Student processes. We finally analyze the Ornstein--Uhlenbeck process driven by our Levy noises and show a few simulation of it.Comment: 28 pages, 3 figures, to be published in J. Phys. A: Math. Ge

    Renormalization of the QED of self-interacting second order spin 1/2 fermions

    Full text link
    We study the one-loop level renormalization of the electrodynamics of spin 1/2 fermions in the Poincar\'e projector formalism, in arbitrary covariant gauge and including fermion self-interactions, which are dimension four operators in this framework. We show that the model is renormalizable for arbitrary values of the tree level gyromagnetic factor g within the validity region of the perturbative expansion, \alpha g^2 << 1. In the absence of tree level fermion self-interactions, we recover the pure QED of second order fermions, which is renormalizable only for |g|=2. Turning off the electromagnetic interaction we obtain a renormalizable Nambu-Jona-Lasinio-like model with second order fermions in four space-time dimensions.Comment: 32 pages, 9 figures. Published versio

    Levy flights and Levy -Schroedinger semigroups

    Full text link
    We analyze two different confining mechanisms for L\'{e}vy flights in the presence of external potentials. One of them is due to a conservative force in the corresponding Langevin equation. Another is implemented by Levy-Schroedinger semigroups which induce so-called topological Levy processes (Levy flights with locally modified jump rates in the master equation). Given a stationary probability function (pdf) associated with the Langevin-based fractional Fokker-Planck equation, we demonstrate that generically there exists a topological L\'{e}vy process with the very same invariant pdf and in the reverse.Comment: To appear in Cent. Eur. J. Phys. (2010

    The Schroedinger Problem, Levy Processes Noise in Relativistic Quantum Mechanics

    Full text link
    The main purpose of the paper is an essentially probabilistic analysis of relativistic quantum mechanics. It is based on the assumption that whenever probability distributions arise, there exists a stochastic process that is either responsible for temporal evolution of a given measure or preserves the measure in the stationary case. Our departure point is the so-called Schr\"{o}dinger problem of probabilistic evolution, which provides for a unique Markov stochastic interpolation between any given pair of boundary probability densities for a process covering a fixed, finite duration of time, provided we have decided a priori what kind of primordial dynamical semigroup transition mechanism is involved. In the nonrelativistic theory, including quantum mechanics, Feyman-Kac-like kernels are the building blocks for suitable transition probability densities of the process. In the standard "free" case (Feynman-Kac potential equal to zero) the familiar Wiener noise is recovered. In the framework of the Schr\"{o}dinger problem, the "free noise" can also be extended to any infinitely divisible probability law, as covered by the L\'{e}vy-Khintchine formula. Since the relativistic Hamiltonians |\nabla | and +m2m\sqrt {-\triangle +m^2}-m are known to generate such laws, we focus on them for the analysis of probabilistic phenomena, which are shown to be associated with the relativistic wave (D'Alembert) and matter-wave (Klein-Gordon) equations, respectively. We show that such stochastic processes exist and are spatial jump processes. In general, in the presence of external potentials, they do not share the Markov property, except for stationary situations. A concrete example of the pseudodifferential Cauchy-Schr\"{o}dinger evolution is analyzed in detail. The relativistic covariance of related waveComment: Latex fil
    corecore