11,333 research outputs found

    PT-symmetric sine-Gordon breathers

    Get PDF
    In this work, we explore a prototypical example of a genuine continuum breather (i.e., not a standing wave) and the conditions under which it can persist in a PT\mathcal{P T}-symmetric medium. As our model of interest, we will explore the sine-Gordon equation in the presence of a PT\mathcal{P T}- symmetric perturbation. Our main finding is that the breather of the sine-Gordon model will only persist at the interface between gain and loss that PT\mathcal{P T}-symmetry imposes but will not be preserved if centered at the lossy or at the gain side. The latter dynamics is found to be interesting in its own right giving rise to kink-antikink pairs on the gain side and complete decay of the breather on the lossy side. Lastly, the stability of the breathers centered at the interface is studied. As may be anticipated on the basis of their "delicate" existence properties such breathers are found to be destabilized through a Hopf bifurcation in the corresponding Floquet analysis

    Motion of discrete solitons assisted by nonlinearity management

    Get PDF
    We demonstrate that periodic modulation of the nonlinearity coefficient in the discrete nonlinear Schr\"{o}dinger (DNLS) equation can strongly facilitate creation of traveling solitons in the lattice. We predict this possibility in an analytical form, and test it in direct simulations. Systematic simulations reveal several generic dynamical regimes, depending on the amplitude and frequency of the time modulation, and on initial thrust which sets the soliton in motion. These regimes include irregular motion, regular motion of a decaying soliton, and regular motion of a stable one. The motion may occur in both the straight and reverse directions, relative to the initial thrust. In the case of stable motion, extremely long simulations in a lattice with periodic boundary conditions demonstrate that the soliton keeps moving as long as we can monitor without any visible loss. Velocities of moving stable solitons are in good agreement with the analytical prediction, which is based on requiring a resonance between the ac drive and motion of the soliton through the periodic potential. All the generic dynamical regimes are mapped in the model's parameter space. Collisions between moving stable solitons are briefly investigated too, with a conclusion that two different outcomes are possible: elastic bounce, or bounce with mass transfer from one soliton to the other. The model can be realized experimentally in a Bose-Einstein condensate trapped in a deep optical lattice

    Nucleation of breathers via stochastic resonance in nonlinear lattices

    Get PDF
    By applying a staggered driving force in a prototypical discrete model with a quartic nonlinearity, we demonstrate the spontaneous formation and destruction of discrete breathers with a selected frequency due to thermal fluctuations. The phenomenon exhibits the striking features of stochastic resonance (SR): a nonmonotonic behavior as noise is increased and breather generation under subthreshold conditions. The corresponding peak is associated with a matching between the external driving frequency and the breather frequency at the average energy given by ambient temperature.Comment: Added references, figure 5 modified to include new dat

    Coupled backward- and forward-propagating solitons in a composite right/left-handed transmission line

    Get PDF
    We study the coupling between backward- and forward-propagating wave modes, with the same group velocity, in a composite right/left-handed nonlinear transmission line. Using an asymptotic multiscale expansion technique, we derive a system of two coupled nonlinear Schr{\"o}dinger equations governing the evolution of the envelopes of these modes. We show that this system supports a variety of backward- and forward propagating vector solitons, of the bright-bright, bright-dark and dark-bright type. Performing systematic numerical simulations in the framework of the original lattice that models the transmission line, we study the propagation properties of the derived vector soliton solutions. We show that all types of the predicted solitons exist, but differ on their robustness: only bright-bright solitons propagate undistorted for long times, while the other types are less robust, featuring shorter lifetimes. In all cases, our analytical predictions are in a very good agreement with the results of the simulations, at least up to times of the order of the solitons' lifetimes

    Speed-of-light pulses in a nonlinear Weyl equation

    Get PDF
    We introduce a prototypical nonlinear Weyl equation, motivated by recent developments in massless Dirac fermions, topological semimetals and photonics. We study the dynamics of its pulse solutions and find that a localized one-hump initial condition splits into a localized two-hump pulse, while an associated phase structure emerges in suitable components of the spinor field. For times larger than a transient time tst_s this pulse moves with the speed of light (or Fermi velocity in Weyl semimetals), effectively featuring linear wave dynamics and maintaining its shape (both in two and three dimensions). We show that for the considered nonlinearity, this pulse represents an exact solution of the nonlinear Weyl (NLW) equation. Finally, we comment on the generalization of the results to a broader class of nonlinearities and on their emerging potential for observation in different areas of application.Comment: 7 pages, 6 figure

    Vibrational Instabilities in Resonant Electron Transport through Single-Molecule Junctions

    Full text link
    We analyze various limits of vibrationally coupled resonant electron transport in single-molecule junctions. Based on a master equation approach, we discuss analytic and numerical results for junctions under a high bias voltage or weak electronic-vibrational coupling. It is shown that in these limits the vibrational excitation of the molecular bridge increases indefinitely, i.e. the junction exhibits a vibrational instability. Moreover, our analysis provides analytic results for the vibrational distribution function and reveals that these vibrational instabilities are related to electron-hole pair creation processes.Comment: 19 pages, 3 figure

    An energy-based stability criterion for solitary traveling waves in Hamiltonian lattices

    Get PDF
    In this work, we revisit a criterion, originally proposed in [Nonlinearity {\bf 17}, 207 (2004)], for the stability of solitary traveling waves in Hamiltonian, infinite-dimensional lattice dynamical systems. We discuss the implications of this criterion from the point of view of stability theory, both at the level of the spectral analysis of the advance-delay differential equations in the co-traveling frame, as well as at that of the Floquet problem arising when considering the traveling wave as a periodic orbit modulo a shift. We establish the correspondence of these perspectives for the pertinent eigenvalue and Floquet multiplier and provide explicit expressions for their dependence on the velocity of the traveling wave in the vicinity of the critical point. Numerical results are used to corroborate the relevant predictions in two different models, where the stability may change twice. Some extensions, generalizations and future directions of this investigation are also discussed

    Reaction-diffusion spatial modeling of COVID-19: Greece and Andalusia as case examples

    Get PDF
    We examine the spatial modeling of the outbreak of COVID-19 in two regions: the autonomous community of Andalusia in Spain and the mainland of Greece. We start with a 0D compartmental epidemiological model consisting of Susceptible, Exposed, Asymptomatic, (symptomatically) Infected, Hospitalized, Recovered, and deceased populations. We emphasize the importance of the viral latent period and the key role of an asymptomatic population. We optimize model parameters for both regions by comparing predictions to the cumulative number of infected and total number of deaths via minimizing the 2\ell^2 norm of the difference between predictions and observed data. We consider the sensitivity of model predictions on reasonable variations of model parameters and initial conditions, addressing issues of parameter identifiability. We model both pre-quarantine and post-quarantine evolution of the epidemic by a time-dependent change of the viral transmission rates that arises in response to containment measures. Subsequently, a spatially distributed version of the 0D model in the form of reaction-diffusion equations is developed. We consider that, after an initial localized seeding of the infection, its spread is governed by the diffusion (and 0D model "reactions") of the asymptomatic and symptomatically infected populations, which decrease with the imposed restrictive measures. We inserted the maps of the two regions, and we imported population-density data into COMSOL, which was subsequently used to solve numerically the model PDEs. Upon discussing how to adapt the 0D model to this spatial setting, we show that these models bear significant potential towards capturing both the well-mixed, 0D description and the spatial expansion of the pandemic in the two regions. Veins of potential refinement of the model assumptions towards future work are also explored.Comment: 28 pages, 16 figures and 2 movie

    Waiting time distribution for electron transport in a molecular junction with electron-vibration interaction

    Full text link
    On the elementary level, electronic current consists of individual electron tunnelling events that are separated by random time intervals. The waiting time distribution is a probability to observe the electron transfer in the detector electrode at time t+τt+\tau given that an electron was detected in the same electrode at earlier time tt. We study waiting time distribution for quantum transport in a vibrating molecular junction. By treating the electron-vibration interaction exactly and molecule-electrode coupling perturbatively, we obtain master equation and compute the distribution of waiting times for electron transport. The details of waiting time distributions are used to elucidate microscopic mechanism of electron transport and the role of electron-vibration interactions. We find that as nonequilibrium develops in molecular junction, the skewness and dispersion of the waiting time distribution experience stepwise drops with the increase of the electric current. These steps are associated with the excitations of vibrational states by tunnelling electrons. In the strong electron-vibration coupling regime, the dispersion decrease dominates over all other changes in the waiting time distribution as the molecular junction departs far away from the equilibrium
    corecore