87 research outputs found

    The Brain NGF Metabolic Pathway in Health and in Alzheimer’s Pathology

    Get PDF
    Emerging research has re-emphasized the role of the cortical cholinergic system in the symptomology and progression of Alzheimer’s disease (AD). Basal forebrain (BF) cholinergic nuclei depend on target-derived NGF for survival during development and for the maintenance of a classical cholinergic phenotype during adulthood. In AD, BF cholinergic neurons lose their cholinergic phenotype and function, suggesting an impairment in NGF-mediated trophic support. We propose that alterations to the enzymatic pathway that controls the maturation of proNGF to mature NGF and the latter’s ulterior degradation underlie this pathological process. Indeed, the NGF metabolic pathway has been demonstrated to be impaired in AD and other amyloid pathologies, and pharmacological manipulation of NGF metabolism has consequences in vivo for both levels of proNGF/NGF and the phenotype of BF cholinergic neurons. The NGF pathway may also have potential as a biomarker of cognitive decline in AD, as its changes can predict future cognitive decline in patients with Down syndrome as they develop preclinical Alzheimer’s pathology. New evidence suggests that the cholinergic system, and by extension NGF, may have a greater role in the progression of AD than previously realized, as changes to the BF precede and predict changes to the entorhinal cortex, as anticholinergic drugs increase odds of developing AD, and as the use of donepezil can reduce rates of hippocampal and cortical thinning. These findings suggest that new, more sophisticated cholinergic therapies should be capable of preserving the basal forebrain thus having profound positive effects as treatments for AD

    Experimental Pharmacology in Transgenic Rodent Models of Alzheimer’s Disease

    Get PDF
    This Mini Review discusses the merits and shortfalls of transgenic (tg) rodents modeling aspects of the human Alzheimer’s disease (AD) pathology and their application to evaluate experimental therapeutics. It addresses some of the differences between mouse and rat tg models for these investigations. It relates, in a condensed fashion, the experience of our research laboratory with the application of anti-inflammatory compounds and S-adenosylmethionine (SAM) at the earliest stages of AD-like amyloid pathology in tg mice. The application of SAM was intended to revert the global brain DNA hypomethylation unleashed by the intraneuronal accumulation of amyloid-β-immunoreactive material, an intervention that restored levels of DNA methylation including of the bace1 gene. This review also summarizes experimental pharmacology observations made in the McGill tg rat model of AD-like pathology by applying “nano-lithium” or a drug with allosteric M1 muscarinic and sigma 1 receptor agonistic properties (AF710B). Extremely low doses of lithium (up to 400 times lower than used in the clinic) had remarkable beneficial effects on lowering pathology and improving cognitive functions in tg rats. Likewise, AF710B treatment, even at advanced stages of the pathology, displayed remarkable beneficial effects. This drug, in experimental conditions, demonstrated possible “disease-modifying” properties as pathology was frankly diminished and cognition improved after a month of “wash-out” period. The Mini-Review ends with a discussion on the predictive value of similar experimental pharmacological interventions in current rodent tg models. It comments on the validity of some of these approaches for early interventions at preclinical stages of AD, interventions which may be envisioned once definitive diagnosis of AD before clinical presentation is made possible

    Engagement of the PFC in consolidation and recall of recent spatial memory

    Get PDF
    The standard model of system consolidation proposes that memories are initially hippocampus dependent and become hippocampus independent over time. Previous studies have demonstrated the involvement of the medial prefrontal cortex (mPFC) in the retrieval of remote memories. The transformations required to make a memory undergo system's consolidation are thought to require synaptic plasticity. In this study, we investigated the participation of the mitogen-activated protein kinase (MAPK)/ERK pathway in acquisition, memory consolidation, and recent memory recall of the Morris water maze (MWM) task using a 1-d training protocol. To this end, bilateral injections of the MEK inhibitor U0126 into the rat mPFC were performed. The injection of the MEK inhibitor in the mPFC did not affect the acquisition of the MWM. However, MEK inhibitor resulted in impairments on recent memory retrieval either when applied at the end of the learning phase (memory consolidation) or prior to the retention test. The results strongly support the concept that recently acquired and consolidated spatial memories require the mPFC, and that local activation of the MAPK/ERK pathway in the mPFC is necessary for the consolidation and recall of recent memories.Fil: Leon, Wanda C.. McGill University; CanadáFil: Bruno, Martin. McGill University; Canadá. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Allard, Simon. McGill University; CanadáFil: Nader, Karim. McGill University; CanadáFil: Cuello, A. Claudio. McGill University; Canad

    Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer's disease-like amyloid pathology

    Get PDF
    BACKGROUND: A growing body of evidence indicates that inflammation is one of the earliest neuropathological events in Alzheimer's disease. Accordingly, we have recently shown the occurrence of an early, pro-inflammatory reaction in the hippocampus of young, three-month-old transgenic McGill-Thy1-APP mice in the absence of amyloid plaques but associated with intracellular accumulation of amyloid beta petide oligomers. The role of such a pro-inflammatory process in the progression of the pathology remained to be elucidated. METHODS AND RESULTS: To clarify this we administered minocycline, a tetracyclic derivative with anti-inflammatory and neuroprotective properties, to young, pre-plaque McGill-Thy1-APP mice for one month. The treatment ended at the age of three months, when the mice were still devoid of plaques. Minocycline treatment corrected the up-regulation of inducible nitric oxide synthase and cyclooxygenase-2 observed in young transgenic placebo mice. Furthermore, the down-regulation of inflammatory markers correlated with a reduction in amyloid precursor protein levels and amyloid precursor protein-related products. Beta-site amyloid precursor protein cleaving enzyme 1 activity and levels were found to be up-regulated in transgenic placebo mice, while minocycline treatment restored these levels to normality. The anti-inflammatory and beta-secretase 1 effects could be partly explained by the inhibition of the nuclear factor kappa B pathway. CONCLUSIONS: Our study suggests that the pharmacological modulation of neuroinflammation might represent a promising approach for preventing or delaying the development of Alzheimer's disease neuropathology at its initial, pre-clinical stages. The results open new vistas to the interplay between inflammation and amyloid pathology

    Longitudinal analysis of the behavioral phenotype in a novel transgenic rat model of early stages of Alzheimer's disease

    Get PDF
    Intraneuronal accumulation of amyloid beta (iAbeta) has been linked to mild cognitive impairment that may precede Alzheimers disease (AD) onset. This neuropathological trait was recently mimicked in a novel animal model of AD, the hemizygous transgenic McGill-R-Thy1-APP (Tg+/-) rat. The characterization of the behavioral phenotypes in this animal model could provide a baseline of efficacy for earlier therapeutic interventions. The aim of the present study was to undertake a longitudinal study of Abeta accumulation and a comprehensive behavioral evaluation of this transgenic rat model. We assessed exploratory activity, anxiety-related behaviors, recognition memory, working memory, spatial learning and reference memory at 3, 6 and 12 months of age. In parallel, we measured Abeta by ELISA, Western blots and semiquantitative immunohistochemistry in hippocampal samples. SDS-soluble Abeta peptide accumulated at low levels (9 pg/mg) without differences among ages. However, Western blots showed SDS-resistant Abeta oligomers (30 kDa) at 6 and 12 months, but not at 3 months. When compared to wild-type (WT), male Tg+/- rats exhibited a spatial reference memory deficit in the Morris Water Maze (MWM) as early as 3 months of age, which persisted at 6 and 12 months. In addition, Tg+/- rats displayed a working memory impairment in the Y-maze and higher anxiety levels in the Open Field (OF) at 6 and 12 months of age, but not at 3 months. Exploratory activity in the OF was similar to that of WT at all time points. Spatial learning in the MWM and the recognition memory, as assessed by the Novel Object Recognition Test, were unimpaired at any time point. The data from the present study demonstrate that the hemizygous transgenic McGill-R-Thy1-APP rat has a wide array of behavioral and cognitive impairments from young adulthood to middle-age. The low Abeta burden and early emotional and cognitive deficits in this transgenic rat model supports its potential use for drug discovery purposes in early AD.Fil: Galeano, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas (i); ArgentinaFil: Martino Adami, Pamela Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Do Carmo, Sonia. Mc Gill University; CanadáFil: Blanco, Eduardo. Universitat de Leida; EspañaFil: Rotondaro, Cecilia. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; ArgentinaFil: Capani, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas (i); ArgentinaFil: Castaño, Eduardo Miguel. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; ArgentinaFil: Cuello, A. Claudio. Mc Gill University; CanadáFil: Morelli, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentin

    Perturbed mitochondria-ER contacts in live neurons that model the amyloid pathology of Alzheimer\u27s disease.

    Get PDF
    The use of fixed fibroblasts from familial and sporadic Alzheimer\u27s disease patients has previously indicated an upregulation of mitochondria-ER contacts (MERCs) as a hallmark of Alzheimer\u27s disease. Despite its potential significance, the relevance of these results is limited because they were not extended to live neurons. Here we performed a dynamic in vivo analysis of MERCs in hippocampal neurons from McGill-R-Thy1-APP transgenic rats, a model of Alzheimer\u27s disease-like amyloid pathology. Live FRET imaging of neurons from transgenic rats revealed perturbed \u27lipid-MERCs\u27 (gap width \u3c10 nm), while \u27Ca2+-MERCs\u27 (10-20 nm gap width) were unchanged. In situ TEM showed no significant differences in the lipid-MERCs:total MERCs or lipid-MERCs:mitochondria ratios; however, the average length of lipid-MERCs was significantly decreased in neurons from transgenic rats as compared to controls. In accordance with FRET results, untargeted lipidomics showed significant decreases in levels of 12 lipids and bioenergetic analysis revealed respiratory dysfunction of mitochondria from transgenic rats. Thus, our results reveal changes in MERC structures coupled with impaired mitochondrial functions in Alzheimer\u27s disease-related neurons.This article has an associated First Person interview with the first author of the paper

    Early Long-Term Memory Impairment and Changes in the Expression of Synaptic Plasticity-Associated Genes, in the McGill-R-Thy1-APP Rat Model of Alzheimer's-Like Brain Amyloidosis

    Get PDF
    Accruing evidence supports the hypothesis that memory deficits in early Alzheimer Disease (AD) might be due to synaptic failure caused by accumulation of intracellular amyloid beta (Aβ) oligomers, then secreted to the extracellular media. Transgenic mouse AD models provide valuable information on AD pathology. However, the failure to translate these findings to humans calls for models that better recapitulate the human pathology. McGill-R-Thy1-APP transgenic (Tg) rat expresses the human amyloid precursor protein (APP751) with the Swedish and Indiana mutations (of familial AD), leading to an AD-like slow-progressing brain amyloid pathology. Therefore, it offers a unique opportunity to investigate learning and memory abilities at early stages of AD, when Aβ accumulation is restricted to the intracellular compartment, prior to plaque deposition. Our goal was to further investigate early deficits in memory, particularly long-term memory in McGill-R-Thy1-APP heterozygous (Tg+/–) rats. Short-term- and long-term habituation to an open field were preserved in 3-, 4-, and 6-month-old (Tg+/–). However, long-term memory of inhibitory avoidance to a foot-shock, novel object-recognition and social approaching behavior were seriously impaired in 4-month-old (Tg+/–) male rats, suggesting that they are unable to either consolidate and/or evoke such associative and discriminative memories with aversive, emotional and spatial components. The long-term memory deficits were accompanied by increased transcript levels of genes relevant to synaptic plasticity, learning and memory processing in the hippocampus, such as Grin2b, Dlg4, Camk2b, and Syn1. Our findings indicate that in addition to the previously well-documented deficits in learning and memory, McGill-R-Thy1-APP rats display particular long-term-memory deficits and deep social behavior alterations at pre-plaque early stages of the pathology. This highlights the importance of Aβ oligomers and emphasizes the validity of the model to study AD-like early processes, with potentially predictive value.Fil: Habif, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Do Carmo, Sonia. McGill University; CanadáFil: Baez, Maria Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Colettis, Natalia Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Cercato, Magalí Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Salas, Daniela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Acutain, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Sister, Caterina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Berkowicz, Valeria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Canal, Maria Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Gonzalez Garello, Tomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Cuello, A. Claudio. McGill University; CanadáFil: Jerusalinsky, Diana Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentin
    corecore