746 research outputs found

    Smoothed Analysis of Moore-Penrose Inversion

    Full text link
    We perform a smoothed analysis of the condition number of rectangular matrices. We prove that, asymptotically, the expected value of this condition number depends only of the elongation of the matrix, and not on the center and variance of the underlying probability distribution.Comment: 19 pages. Version 2 contains a new section on application

    A Measure of Space for Computing over the Reals

    Full text link
    We propose a new complexity measure of space for the BSS model of computation. We define LOGSPACE\_W and PSPACE\_W complexity classes over the reals. We prove that LOGSPACE\_W is included in NC^2\_R and in P\_W, i.e. is small enough for being relevant. We prove that the Real Circuit Decision Problem is P\_R-complete under LOGSPACE\_W reductions, i.e. that LOGSPACE\_W is large enough for containing natural algorithms. We also prove that PSPACE\_W is included in PAR\_R

    Computing the homology of basic semialgebraic sets in weak exponential time

    Get PDF
    We describe and analyze an algorithm for computing the homology (Betti numbers and torsion coefficients) of basic semialgebraic sets which works in weak exponential time. That is, out of a set of exponentially small measure in the space of data the cost of the algorithm is exponential in the size of the data. All algorithms previously proposed for this problem have a complexity which is doubly exponential (and this is so for almost all data)

    Plantinga-Vegter algorithm takes average polynomial time

    Full text link
    We exhibit a condition-based analysis of the adaptive subdivision algorithm due to Plantinga and Vegter. The first complexity analysis of the PV Algorithm is due to Burr, Gao and Tsigaridas who proved a O(2τd4logd)O\big(2^{\tau d^{4}\log d}\big) worst-case cost bound for degree dd plane curves with maximum coefficient bit-size τ\tau. This exponential bound, it was observed, is in stark contrast with the good performance of the algorithm in practice. More in line with this performance, we show that, with respect to a broad family of measures, the expected time complexity of the PV Algorithm is bounded by O(d7)O(d^7) for real, degree dd, plane curves. We also exhibit a smoothed analysis of the PV Algorithm that yields similar complexity estimates. To obtain these results we combine robust probabilistic techniques coming from geometric functional analysis with condition numbers and the continuous amortization paradigm introduced by Burr, Krahmer and Yap. We hope this will motivate a fruitful exchange of ideas between the different approaches to numerical computation.Comment: 8 pages, correction of typo
    corecore