44 research outputs found
25-nm diamond crystals hosting single NV color centers sorted by photon-correlation near-field microscopy
Diamond nanocrystals containing highly photoluminescent color centers are
attractive non-classical and near-field light sources. For near-field
applications the size of the nanocrystal is crucial since it defines the
optical resolution. NV (Nitrogen-Vacancy) color centers are efficiently created
by proton irradiation and annealing of a nanodiamond powder. Using near-field
microscopy and photon statistics measurements, we show that nanodiamond with
size down to 25 nm can hold a single NV color center with bright and stable
photoluminescence
The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases
The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article
Sondes actives pour l'optique en champ proche Ă base de nanoparticules isolantes ou de nanodiamants fluorescents
In the " aperture NSOM " configuration, the optical resolution is limited to 50-100 nm in the best cases. In order to probe the optical properties of systems which exhibit dimensions at the nanoscale, a better optical resolution would be advantageous. To reach this goal, we suggest the use of an optical active probe. This kind of probe is based on a fluorescent nano-emitter grafted at the apex of a classical dielectric optical probe. The resolution expected in the optical near-field should be ultimately only limited by the size of the nano-object, that is well below 50 nm. On the basis of previous works done in our laboratory, we present here two new methods for obtaining such optical active probes. These new probes involve two complementary kinds of nanoparticles with attractive sizes and good optical properties (like high emission rate in the visible and excellent photostability). The first method implies YAG nanoparticles synthesized and deposited at the apex of a probe using LECBD (Low Energy Cluster Beam Deposition). The second approach is based on the in situ selection of a nanodiamond hosting color centers (NV) which is attached onto the tip with the help of a charged polymer. Finally, we report on the realization of a room-temperature scanning single-photon probe based on a 20 nm nanodiamond hosting a single NV center, which has been successfully used for NSOM imaging. Such tips should ultimately offer a better resolution than classical optical near-field probes, and should also open new perspectives in various fields like quantum optics/plasmonics or high-resolution, high-sensitivity magnetometry.Dans la configuration dite " NSOM à ouverture ", la résolution optique est dans le meilleur des cas comprise entre 50 et 100 nm. Afin de sonder les propriétés optiques de nanosystèmes, aux dimensions toujours plus petites, une résolution optique plus fine est souhaitable. Pour remplir cet objectif, la solution que nous proposons est l'utilisation d'une sonde active. Une telle sonde repose sur le greffage d'un nano-objet fluorescent à l'apex d'une pointe optique classique. En théorie, la résolution latérale en champ proche devrait être dictée par la taille de ce nano-émetteur (<< 50 nm). Sur la base des travaux réalisés précédemment dans le laboratoire, nous présentons ici deux nouvelles méthodes pour réaliser une telle sonde. Celles-ci impliquent deux types de nanoparticules complémentaires à la taille et aux propriétés optiques attrayantes (forte émission dans le visible, photostabilité). Une première approche a été développée à partir d'un ensemble de nanoparticules de YAG, dopées par des ions cérium, produites et déposées en bout de pointe par LECBD (Low Energy Cluster Beam Deposition). La seconde approche consiste à sélectionner et à fixer en bout de pointe de manière contrôlée (grâce à un polymère) un nanodiamant, contenant des centres colorés (NV), déposé sur une lame de microscopie. L'avancement des travaux est présenté pour les deux types de nano-objets. La mise au point et l'utilisation pour l'imagerie NSOM d'une sonde active à photons uniques, basée sur nanodiamant de 20 nm contenant un seul centre NV et fonctionnant à température ambiante, sont aussi discutées. Au-delà du gain en résolution que peut apporter une telle sonde, ce nouveau type de pointe à photons uniques ouvre de nouvelles perspectives aussi bien en optique et plasmonique quantiques qu'en magnétométrie à haute résolution et haute sensibilité
High index dielectric nanostructures: From directional scattering to electric/magnetic local density of optical states control
International audienc
High index dielectric nanostructures: From directional scattering to electric/magnetic local density of optical states control
International audienc
High index dielectric nanostructures: From directional scattering to electric/magnetic local density of optical states control
International audienc
Near-field scanning single-photon microscopy with an ultrasmall nanodiamond: how good can the resolution be?
International audienc
Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?
International audienceWe discuss theoretically the concept of spatial resolution in near-field scanning optical microscopy (NSOM) in light of a recent work [Opt. Express 17 (2009) 19969] which reported on the achievement of active tips made of a single ultrasmall fluorescent nanodiamond grafted onto the apex of a substrate tip and on their validation in NSOM imaging. Since fluorescent nanodiamonds tend to decrease steadily in size, we assimilate a nanodiamond-based tip to a point-like single photon source and compare its ultimate resolution with that offered by standard metal-coated aperture NSOM tips. We demonstrate both classically and quantum mechanically that NSOM based on a point-like tip has a resolving power that is only limited by the scan height over the imaged system whereas the aperture-tip resolution depends critically on both the scan height and aperture diameter. This is a consequence of the complex distribution of the electromagnetic field around the aperture that tends to artificially duplicate the imaged objects. We show that the point-like tip does not suffer from this "squint" and that it rapidly approaches its ultimate resolution in the near-field as soon its scan height falls below the distance between the two nano-objects to be resolved
'Deterministic' quantum plasmonics
International audienceWe demonstrate 'deterministic' launching of propagative quantum surface-plasmon polaritons at freely chosen positions on gold plasmonic receptacles. This is achieved by using as plasmon launcher a near-field scanning optical source made of a diamond nanocrystal with two Nitrogen-Vacancy color-center occupancy. Our demonstration relies on leakage-radiation microscopy of a thin homogeneous gold film and on near-field optical microscopy of a nanostructured thick gold film. Our work paves the way to future fundamental studies and applications in quantum plasmonics that require an accurate positioning of single-plasmon sources and may open a new branch in plasmonics and nanophotonics, namely scanning quantum plasmonics