38 research outputs found

    Oxytocin and cholecystokinin secretion in women with colectomy

    Get PDF
    BACKGROUND: Cholecystokinin (CCK) concentrations in plasma have been shown to be significantly higher in colectomised subjects compared to healthy controls. This has been ascribed to reduced inhibition of CCK release from colon. In an earlier study CCK in all but one woman who was colectomised, induced release of oxytocin, a peptide present throughout the gastrointestinal (GI) tract. The aim of this study was thus to examine if colectomised women had a different oxytocin response to CCK compared to healthy controls. METHODS: Eleven women, mean age 34.4 ± 2.3 years, who had undergone colectomy because of ulcerative colitis or constipation were studied. Eleven age-matched healthy women served as controls. All subjects were fasted overnight and given 0.2 μg/kg body weight of CCK-8 i.v. in the morning. Samples were taken ten minutes and immediately before the injection, and 10, 20, 30, 45, 60, 90 and 120 min afterwards. Plasma was collected for measurement of CCK and oxytocin concentrations. RESULTS: The basal oxytocin and CCK concentrations in plasma were similar in the two groups. Intravenous injection of CCK increased the release of oxytocin from 1.31 ± 0.12 and 1.64 ± 0.19 pmol/l to 2.82 ± 0.35 and 3.26 ± 0.50 pmol/l in controls and colectomised women, respectively (p < 0.001). Given the short half-life of CCK-8 in plasma, the increased concentration following injection could not be demonstrated in the controls. On the other hand, in colectomised women, an increase of CCK in plasma was observed for up to 20 minutes after the injection, concentrations increasing from 1.00 ± 0.21 to a maximum of 1.81 ± 0.26 pmol/l (p < 0.002). CONCLUSION: CCK stimulates the release of oxytocin in women. There is no difference in plasma concentrations between colectomised and controls. However, colectomy seems to reduce the metabolic clearance of CCK. The hyperCCKemia in patients who had undergone colectomy is consequently not only dependent on CCK release, but may also depend on reduced clearance

    Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon

    No full text
    BACKGROUND—Mucins play an important protective role in the colonic mucosa. Luminal factors modulating colonic mucus release have been not fully identified.
AIM—To determine the effect of some dietary compounds on mucus discharge in rat colon.
METHODS—An isolated vascularly perfused rat colon model was used. Mucus secretion was induced by a variety of luminal factors administered as a bolus of 1 ml for 30 minutes in the colonic loop. Mucin release was evaluated using a sandwich enzyme linked immunosorbent assay supported by histological analysis.
RESULTS—The three dietary fibres tested in this study (pectin, gum arabic, and cellulose) did not provoke mucus secretion. Luminal administration of sodium alginate (an algal polysaccharide used as a food additive) or ulvan (a sulphated algal polymer) induced a dose dependent increase in mucin discharge over the concentration range 1-25 mg/l (p<0.05 for 25 mg/l alginate and p<0.05 for 10( )and 25 mg/l ulvan). Glucuronic acid and galacturonic acid, which are major constituents of a variety of fibres, produced significant mucin secretion (p<0.05). Hydrogen sulphide and mercaptoacetate, two sulphides produced in the colonic lumen by microbial fermentation of sulphated polysaccharides, did not modify mucin secretion. Among the short chain fatty acids, acetate (5-100 mM) induced a dose dependent release of mucus (p<0.05 for 100 mM acetate). Interestingly, butyrate at a concentration of 5 mM produced colonic mucin secretion (p<0.05), but increasing its concentration to 100 mM provoked a gradual decrease in mucus discharge. Propionate (5-100 mM) did not induce mucin release. Several dietary phenolic compounds (quercetin, epicatechin, resveratrol) did not provoke mucus discharge.
CONCLUSIONS—Two algal polysaccharides (alginate and ulvan), two uronic acids (glucuronic acid and galacturonic acid), and the short chain fatty acids acetate and butyrate induce mucin secretion in rat colon. Taken together, these data suggest that some food constituents and their fermentation products may regulate the secretory function of colonic goblet cells.


Keywords: mucin secretion; colon; dietary fibres; algal fibres; short chain fatty acids; sulphide

    Secretion of the trefoil factor TFF3 from the isolated vascularly perfused rat colon

    No full text
    The trefoil factor TFF3 is a peptide predominantly produced by mucus-secreting cells in the small and large intestines. It has been implicated in intestinal protection and repair. The mechanisms that govern TFF3 secretion are poorly understood. The aim of this study was, therefore, to evaluate the influence of neurotransmitters, hormonal peptides and mediators of inflammation on the release of TFF3. For this purpose, an isolated vascularly perfused rat colon preparation was used. After a bolus administration of 1 ml isotonic saline into the lumen, TFF3 secretion was induced by a 30-min intra-arterial infusion of the compounds to be tested. TFF3 was evaluated in the luminal effluent using a newly developed radioimmunoassay. TFF3 was barely detected in crude luminal samples. In contrast, dithiothreitol (DTT) treatment of the effluent revealed TFF3 immunoreactivity, which amounted to about 0.3 pmol min(-1) cm(-1) in the basal state. Gel chromatography of DTT-treated luminal samples revealed a single peak that co-eluted with the monomeric form of TFF3. TFF3 was not detected in the portal effluent. Bethanechol (10(-6)-10(-4) M), vasoactive intestinal peptide (VIP, 10(-8)-10(-7) M) or bombesin (10(-8)-10(-7) M) induced a dose-dependent release of TFF3. In contrast, substance P evoked a modest release of TFF3, whereas calcitonin gene-related peptide (CGRP), somatostatin, neurotensin or peptide YY (PYY) did not modify TFF3 secretion. The degranulator compound bromolasalocid, 16,16-dimethyl PGE2 (dmPGE2) or interleukin-1-beta (IL-1-beta) also evoked a marked release of TFF3. In conclusion, TFF3 in the colonic effluent is present in a complex. This association presumably involves a disulfide bond. Additionally, the present results suggest a role for enteric nervous system and resident immune cells in mediation of colonic TFF3 secretion
    corecore