99 research outputs found

    Cardio-oncology: concepts and practice

    Get PDF
    Substantial progress in cancer therapy increasingly allows higher cure rates, and even advanced disease can be stabilized, allowing improved survival with quality of life for months to years, meaning comorbid diseases are a growing determinant of outcome. Cardiovascular events substantially contribute to long-term morbidity and mortality in people living with or surviving cancer. In recognition of this, the subspecialty of cardio-oncology has emerged, and aims to promote cardiovascular heath, whilst facilitating the most effective cancer therapy. This review describes the concept of cardio-oncology, and illustrates the role played by a specialist team in improving outcomes, using heart failure secondary to breast cancer treatment as an example. We aim to highlight pivotal original research and comprehensive summaries of the most relevant topics, providing an overview for cardiologists and oncologists about this increasingly important medical problem

    Dose-dependent oral glucocorticoid cardiovascular risks in people with immune-mediated inflammatory diseases: A population-based cohort study

    Get PDF
    Background Glucocorticoids are widely used to reduce disease activity and inflammation in patients with a range of immune-mediated inflammatory diseases. It is uncertain whether or not low to moderate glucocorticoid dose increases cardiovascular risk. We aimed to quantify glucocorticoid dose-dependent cardiovascular risk in people with 6 immune-mediated inflammatory diseases. Methods and findings We conducted a population-based cohort analysis of medical records from 389 primary care practices contributing data to the United Kingdom Clinical Practice Research Datalink (CPRD), linked to hospital admissions and deaths in 1998–2017. We estimated time-variant daily and cumulative glucocorticoid prednisolone-equivalent dose-related risks and hazard ratios (HRs) of first all-cause and type-specific cardiovascular diseases (CVDs). There were 87,794 patients with giant cell arteritis and/or polymyalgia rheumatica (n = 25,581), inflammatory bowel disease (n = 27,739), rheumatoid arthritis (n = 25,324), systemic lupus erythematosus (n = 3,951), and/or vasculitis (n = 5,199), and no prior CVD. Mean age was 56 years and 34.1% were men. The median follow-up time was 5.0 years, and the proportions of person–years spent at each level of glucocorticoid daily exposure were 80% for non-use, 6.0% for <5 mg, 11.2% for 5.0–14.9 mg, 1.6% for 15.0–24.9 mg, and 1.2% for ≄25.0 mg. Incident CVD occurred in 13,426 (15.3%) people, including 6,013 atrial fibrillation, 7,727 heart failure, and 2,809 acute myocardial infarction events. One-year cumulative risks of all-cause CVD increased from 1.4% in periods of non-use to 8.9% for a daily prednisolone-equivalent dose of ≄25.0 mg. Five-year cumulative risks increased from 7.1% to 28.0%, respectively. Compared to periods of non-glucocorticoid use, those with <5.0 mg daily prednisolone-equivalent dose had increased all-cause CVD risk (HR = 1.74; 95% confidence interval [CI] 1.64–1.84; range 1.52 for polymyalgia rheumatica and/or giant cell arteritis to 2.82 for systemic lupus erythematosus). Increased dose-dependent risk ratios were found regardless of disease activity level and for all type-specific CVDs. HRs for type-specific CVDs and <5.0-mg daily dose use were: 1.69 (95% CI 1.54–1.85) for atrial fibrillation, 1.75 (95% CI 1.56–1.97) for heart failure, 1.76 (95% CI 1.51–2.05) for acute myocardial infarction, 1.78 (95% CI 1.53–2.07) for peripheral arterial disease, 1.32 (95% CI 1.15–1.50) for cerebrovascular disease, and 1.93 (95% CI 1.47–2.53) for abdominal aortic aneurysm. The lack of hospital medication records and drug adherence data might have led to underestimation of the dose prescribed when specialists provided care and overestimation of the dose taken during periods of low disease activity. The resulting dose misclassification in some patients is likely to have reduced the size of dose–response estimates. Conclusions In this study, we observed an increased risk of CVDs associated with glucocorticoid dose intake even at lower doses (<5 mg) in 6 immune-mediated diseases. These results highlight the importance of prompt and regular monitoring of cardiovascular risk and use of primary prevention treatment at all glucocorticoid doses

    Human exercise-induced circulating progenitor cell mobilization is nitric oxide-dependent and is blunted in South Asian men

    Get PDF
    This article is available open access through the publisher’s website. Copyright @ 2010 American Heart Foundation.Objective— Circulating progenitor cells (CPC) have emerged as potential mediators of vascular repair. In experimental models, CPC mobilization is critically dependent on nitric oxide (NO). South Asian ethnicity is associated with reduced CPC. We assessed CPC mobilization in response to exercise in Asian men and examined the role of NO in CPC mobilization per se. Methods and Results— In 15 healthy, white European men and 15 matched South Asian men, CPC mobilization was assessed during moderate-intensity exercise. Brachial artery flow-mediated vasodilatation was used to assess NO bioavailability. To determine the role of NO in CPC mobilization, identical exercise studies were performed during intravenous separate infusions of saline, the NO synthase inhibitor l-NMMA, and norepinephrine.  Flow-mediated vasodilatation (5.8%±0.4% vs 7.9%±0.5%; P=0.002) and CPC mobilization (CD34+/KDR+ 53.2% vs 85.4%; P=0.001; CD133+/CD34+/KDR+ 48.4% vs 73.9%; P=0.05; and CD34+/CD45− 49.3% vs 78.4; P=0.006) was blunted in the South Asian group. CPC mobilization correlated with flow-mediated vasodilatation and l-NMMA significantly reduced exercise-induced CPC mobilization (CD34+/KDR+ −3.3% vs 68.4%; CD133+/CD34+/KDR+ 0.7% vs 71.4%; and CD34+/CD45− −30.5% vs 77.8%; all P<0.001). Conclusion— In humans, NO is critical for CPC mobilization in response to exercise. Reduced NO bioavailability may contribute to imbalance between vascular damage and repair mechanisms in South Asian men.British Heart Foundatio

    Prioritizing symptom management in the treatment of chronic heart failure

    Get PDF
    Chronic heart failure (CHF) is a chronic, progressive disease that has detrimental consequences on a patient's quality of life (QoL). In part due to requirements for market access and licensing, the assessment of current and future treatments focuses on reducing mortality and hospitalizations. Few drugs are available principally for their symptomatic effect despite the fact that most patients' symptoms persist or worsen over time and an acceptance that the survival gains of modern therapies are mitigated by poorly controlled symptoms. Additional contributors to the failure to focus on symptoms could be the result of under‐reporting of symptoms by patients and carers and a reliance on insensitive symptomatic categories in which patients frequently remain despite additional therapies. Hence, formal symptom assessment tools, such as questionnaires, can be useful prompts to encourage more fidelity and reproducibility in the assessment of symptoms. This scoping review explores for the first time the assessment options and management of common symptoms in CHF with a focus on patient‐reported outcome tools. The integration of patient‐reported outcomes for symptom assessment into the routine of a CHF clinic could improve the monitoring of disease progression and QoL, especially following changes in treatment or intervention with a targeted symptom approach expected to improve QoL and patient outcomes

    Inorganic Nitrate Promotes Glucose Uptake and Oxidative Catabolism in White Adipose Tissue through the XOR Catalyzed Nitric Oxide Pathway

    Get PDF
    An ageing global population combined with sedentary lifestyles and unhealthy diets has contributed to an increasing incidence of obesity and type 2 diabetes. These metabolic disorders are associated with perturbations to nitric oxide (NO) signaling and impaired glucose metabolism. Dietary inorganic nitrate, found in high concentration in green leafy vegetables, can be converted to NO in vivo and demonstrates anti-diabetic and anti-obesity properties in rodents. Alongside tissues including skeletal muscle and liver, white adipose tissue is also an important physiological site of glucose disposal. However, the distinct molecular mechanisms governing the effect of nitrate on adipose tissue glucose metabolism, and the contribution of this tissue to the glucose tolerant phenotype, remain to be determined. Using a metabolomic and stable-isotope labeling approach, combined with transcriptional analysis, we found that nitrate increases glucose uptake and oxidative catabolism in primary adipocytes and white adipose tissue of nitrate-treated rats. Mechanistically, we determine that nitrate induces these phenotypic changes in primary adipocytes through the xanthine oxidoreductase catalysed reduction of nitrate to nitric oxide and independently of Peroxisome Proliferator-Activated Receptor α. The nitrate-mediated enhancement of glucose uptake and catabolism in white adipose tissue may be a key contributor to the anti-diabetic effects of this anion

    Effect of disease-modifying agents and their association with mortality in multi-morbid patients with heart failure with reduced ejection fraction

    Get PDF
    Aims An increasing proportion of patients with heart failure with reduced ejection fraction (HFrEF) have co‐morbidities. The effect of these co‐morbidities on modes of death and the effect of disease‐modifying agents in multi‐morbid patients is unknown. Methods and results We performed a prospective cohort study of ambulatory patients with HFrEF to assess predictors of outcomes. We identified four key co‐morbidities—ischaemic aetiology of heart failure, diabetes mellitus, chronic obstructive pulmonary disease (COPD), and chronic kidney disease (CKD)—that were highly prevalent and associated with an increased risk of all‐cause mortality. We used these data to explore modes of death and the utilization of disease‐modifying agents in patients with and without these co‐morbidities. The cohort included 1789 consecutively recruited patients who had an average age of 69.6 ± 12.5 years, and 1307 (73%) were male. Ischaemic aetiology of heart failure was the most common co‐morbidity, occurring in 1061 (59%) patients; 503 (28%) patients had diabetes mellitus, 283 (16%) had COPD, and 140 (8%) had CKD stage IV/V. During mean follow‐up of 3.8 ± 1.6 years, 737 (41.5%) patients died, classified as progressive heart failure (n = 227, 32%), sudden (n = 112, 16%), and non‐cardiovascular deaths (n = 314, 44%). Multi‐morbid patients were older (P 2.5‐fold and 1.5‐fold increased risk of sudden death, whilst higher doses of beta‐adrenoceptor antagonists were protective (hazard ratio per milligram 0.92, 95% confidence interval 0.86–0.98, P = 0.009). Each milligram of bisoprolol‐equivalent beta‐adrenoceptor antagonist was associated with 9% (P = 0.001) and 11% (P = 0.023) reduction of sudden deaths in patients with <2 and ≄2 co‐morbidities, respectively. Conclusions Higher doses of beta‐adrenoceptor antagonist are associated with greater protection from sudden death, most evident in multi‐morbid patients. Patients with COPD who appear to be at the highest risk of sudden death are prescribed the lowest doses and less likely to be implanted with implantable cardioverter defibrillators, which might represent a missed opportunity to optimize safe and proven therapies for these patients

    Infection-Related Hospitalization in Heart Failure With Reduced Ejection Fraction: A Prospective Observational Cohort Study

    Get PDF
    Background: Hospitalization is a common adverse event in people with heart failure and reduced ejection fraction, yet is often not primarily due to decompensated heart failure (HF). We investigated the long-term prognosis following infection-related hospitalization. Methods: We conducted a prospective observational cohort study of 711 people with heart failure and reduced ejection fraction recruited from 4 specialist HF clinics in the United Kingdom. All hospitalization episodes (n=1568) were recorded and categorized as primarily due to decompensated HF, other cardiovascular disease, infection-related, or other noncardiovascular disease. Survival was determined after the first hospitalization. Results: During 2900 patient-years of follow-up, there were a total of 14 686 hospital days. At least one hospitalization occurred in 467 people (66%); 25% of first hospitalizations were primarily due to infection and these were not associated with typical signs including tachycardia and pyrexia. Compared with other categories of hospitalization, infection-related was associated with older age, lower serum albumin, higher blood neutrophil counts, and greater prevalence of chronic obstructive pulmonary disease at recruitment. Median survival after first infection-related hospitalization was 18.6 months, comparable to that after first decompensated HF hospitalization, even after age-sex adjustment. The burden of all-cause rehospitalization was comparable irrespective of the category of first hospitalization, but infection more commonly caused re-hospitalization after index infection hospitalization. Conclusions: Infection is a common driver of hospitalization in heart failure and reduced ejection fraction and often presents without classical signs. It is associated with high mortality rates, comparable to decompensated HF, and a major burden of rehospitalization caused by recurrent episodes of infection

    Chronic heart failure with diabetes mellitus is characterized by a severe skeletal muscle pathology

    No full text
    Background Patients with coexistent chronic heart failure (CHF) and diabetes mellitus (DM) demonstrate greater exercise limitation and worse prognosis compared with CHF patients without DM, even when corrected for cardiac dysfunction. Understanding the origins of symptoms in this subgroup may facilitate development of targeted treatments. We therefore characterized the skeletal muscle phenotype and its relationship to exercise limitation in patients with diabetic heart failure (D‐HF). Methods In one of the largest muscle sampling studies in a CHF population, pectoralis major biopsies were taken from age‐matched controls (n = 25), DM (n = 10), CHF (n = 52), and D‐HF (n = 28) patients. In situ mitochondrial function and reactive oxygen species, fibre morphology, capillarity, and gene expression analyses were performed and correlated to whole‐body exercise capacity. Results Mitochondrial respiration, content, coupling efficiency, and intrinsic function were lower in D‐HF patients compared with other groups (P < 0.05). A unique mitochondrial complex I dysfunction was present in D‐HF patients only (P < 0.05), which strongly correlated to exercise capacity (R2 = 0.64; P < 0.001). Mitochondrial impairments in D‐HF corresponded to higher levels of mitochondrial reactive oxygen species (P < 0.05) and lower gene expression of anti‐oxidative enzyme superoxide dismutase 2 (P < 0.05) and complex I subunit NDUFS1 (P < 0.05). D‐HF was also associated with severe fibre atrophy (P < 0.05) and reduced local fibre capillarity (P < 0.05). Conclusions Patients with D‐HF develop a specific skeletal muscle pathology, characterized by mitochondrial impairments, fibre atrophy, and derangements in the capillary network that are linked to exercise intolerance. These novel preliminary data support skeletal muscle as a potential therapeutic target for treating patients with D‐HF

    IGFBP-1 in Cardiometabolic Pathophysiology—Insights From Loss-of-Function and Gain-of-Function Studies in Male Mice

    Get PDF
    We have previously reported that overexpression of human insulin-like growth factor binding protein (IGFBP)-1 in mice leads to vascular insulin sensitization, increased nitric oxide bioavailability, reduced atherosclerosis, and enhanced vascular repair, and in the setting of obesity improves glucose tolerance. Human studies suggest that low levels of IGFBP-1 are permissive for the development of diabetes and cardiovascular disease. Here we seek to determine whether loss of IGFBP-1 plays a causal role in the predisposition to cardiometabolic disease. Metabolic phenotyping was performed in transgenic mice with homozygous knockout of IGFBP-1. This included glucose, insulin, and insulin-like growth factor I tolerance testing under normal diet and high-fat feeding conditions. Vascular phenotyping was then performed in the same mice using vasomotor aortic ring studies, flow cytometry, vascular wire injury, and angiogenesis assays. These were complemented with vascular phenotyping of IGFBP-1 overexpressing mice. Metabolic phenotype was similar in IGFBP-1 knockout and wild-type mice subjected to obesity. Deletion of IGFBP-1 inhibited endothelial regeneration following injury, suggesting that IGFBP-1 is required for effective vascular repair. Developmental angiogenesis was unaltered by deletion or overexpression of IGFBP-1. Recovery of perfusion following hind limb ischemia was unchanged in mice lacking or overexpressing IGFBP-1; however, overexpression of IGFBP-1 stimulated hindlimb perfusion and angiogenesis in insulin-resistant mice. These findings provide new insights into the role of IGFBP-1 in metabolic and vascular pathophysiology. Irrespective of whether loss of IGFBP-1 plays a causal role in the development of cardiometabolic disorders, increasing IGFBP-1 levels appears effective in promoting neovascularization in response to ischemia
    • 

    corecore