15 research outputs found
Effect of Multiple-Jets Exits on the Base Pressure of a Simple Wing-Body Combination at Mach Numbers of 0.6 to 1.27
An investigation has been conducted at Mach numbers of 0.6 to 1.27 to determine the effect of multiple-jet exits on the base pressure of a simple wing-body combination. The design Mach number of the nozzles ranged from 1 to 3 at jet exit diameters equal to 36.4 to 75 percent of the model thickness. Jet total-pressure to free-stream static-pressure ratios ranged from 1 (no flow) to 34.2. The results show that the variation of base pressure coefficient with jet pressure ratio for the model tested was similar to that obtained for single nozzles in bodies of revolution in other investigations. As in the case for single jets the base pressure coefficient for the present model became less negative as the jet exit diameter increased. For a constant throat diameter and an assumed schedule of jet pressure ratio over the speed range of these tests, nozzle Mach number had only a small effect on base pressure coefficient
Jet Effects on Base and Afterbody Pressures of a Cylindrical Afterbody at Transonic Speeds
An investigation of the effects of jet nozzle geometry, size of base annulus, and base bleed upon the base and afterbody pressures of a cylindrical afterbody at transonic speeds has been conducted. Sonic and supersonic conical nozzles with jet-to-base diameter ratios from 0.25 to 0.85 were investigated with a cold jet at jet total-pressure ratios up to approximately 8.0 through a Mach number range from 0.6 to 1.25. Base pressure coefficients of about -0.55 were measured for the sonic nozzles at a Mach number of 1 or greater. The jet-to-base diameter ratio had a substantial effect on the base pressure obtained on the cylindrical afterbody of this investigation. Base bleed was beneficial in increasing the base pressure under certain conditions but had little or no effect at certain other conditions
Recommended from our members
NACA Research Memorandums
Report presenting an investigation at Mach numbers from 0.6 to 1.28 to determine the drag characteristics of a series of conical afterbodies with a cold sonic jet issuing from the base. Models investigated had boattail angles from 3 to 45 degrees, ratios of jet diameter to base diameter of 0.65 and 0.75, and values of the ratios of the base diameter to maximum diameter of 0.55, 0.70, and 0.85. Results regarding afterbody pressure distributions and afterbody drag are provided
Recommended from our members
NACA Research Memorandums
An investigation of the effects of jet nozzle geometry, size of base annulus, and base bleed upon the base and afterbody pressures of a cylindrical afterbody at transonic speeds has been conducted. Sonic and supersonic conical nozzles with jet-to-base diameter ratios from 0.25 to 0.85 were investigated with a cold jet at jet total-pressure ratios up to approximately 8.0 through a Mach number range from 0.6 to 1.25. Base pressure coefficients of about -0.55 were measured for the sonic nozzles at a Mach number of 1 or greater. The jet-to-base diameter ratio had a substantial effect on the base pressure obtained on the cylindrical afterbody of this investigation. Base bleed was beneficial in increasing the base pressure under certain conditions but had little or no effect at certain other conditions