4 research outputs found

    Machine Learning una oportunidad para comprender nuestro entorno

    Get PDF
    El siguiente texto de reflexión analiza el impacto de las tecnologías en los procesos educativos. En una realidad como la nuestra en la que la inteligencia artificial es capaz de procesar millones de datos masivos hace necesaria la implementación del machine learning en la educación básica. El uso de estas herramientas permitirá optimizar nuestro rol de protectores del entorno natural.Postprint (published version

    Análise da deformação axial em colunas de protótipo de habitação rural construído com bambu em Bagua Chica, Peru

    Get PDF
    The UN Sustainable Development Goal 11 promotes the construction of resilient infrastructures. In this sense, the Amazon region is a producer of bamboo, which presents an opportunity to develop the use of this plant and achieve this goal, which is why this research has explored the mechanical properties of bamboo, for this purpose a prototype of a full-scale rural house has been designed and built to evaluate the axial behavior of the columns of this building against an additional permanent load of 0.40 kN/m. It has also been monitored with a mixed system: for temperature and humidity it has been used low cost calibrated sensors mounted on an open source electronic prototyping system that, through an embedded Wifi connection allowed sending the measurements to a database in the cloud; on the other hand, for displacement control it has been used calibrated mechanical comparators, their measurements were performed through a wireless video system. The results indicate that a maximum strain of e= 8x10-5 has been reached and that the columns are still at 1.6% of the elastic limit which indicates a good performance and a high safety factor.Peer ReviewedObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats SosteniblesPostprint (published version

    Análisis estructural avanzado del Templo de Huaytará-Huancavelica, Perú

    Get PDF
    Edificado por AstoHuarakac por orden del Inca Pachacutec como una estructura que permita expandir la influencia del naciente imperio Inca sobre poblaciones rebeldes, la construcción de la estructura de este estudio termino en el año 1497. Con el paso de los años y la casi nula conservación, los daños que afectan la estructurase han hecho más evidentes. Estas patologías se concentran en el los muros de adobe de la nave manifestándose mediante grietas. De la misma forma en el muro Inca se presentan asentamientos y perdida de sección por erosión e incendios anteriores y daños por goteras en las fachadas. El presente trabajo se centra en el análisis estructural no lineal de la iglesia San Juan Bautista de Huaytara para evaluar su comportamiento bajo acciones sísmicas. En la primera parte se presenta el estado de arte seguido por una investigación histórica sobre las fases de construcción de la iglesia. La tercera parte abarca la obtención de un modelo geométrico 3D aplicando técnicas fotogramétricas. A continuación, se presenta una detallada descripción de los componentes estructurales y materiales durante los trabajos de campo in-situ. La quinta sección trata sobre la caracterización mecánica de los materiales de la estructura mediante ensayos de laboratorio en Lima y Barcelona. Para la evaluación de comportamiento estructural se ha elaborado un modelo numérico 3D de elementos finitos que se ha analizado frente a cargas gravitatorias y de sismo. Para ello se ha aplicado el método estático no lineal (Pushover) permitiendo evaluar los efectos del sismo en la iglesia, así como la identificación de las causas de daño estructural actual existentes y de los elementos más vulnerables.The church was built by AstoHuaraca by order of the Inca Pachacutec as a structure that allowed expanding the influence of the nascent Inca empire on rebel populations, the construction of the structure finished in 1497. The structure was built by AstoHuaraca by order of the Inca Pachacutec as a structure that allowed expanding the influence of the nascent Inca empire on rebel populations, the construction of the structure finished in 1497. Over the years and almost no conservation, the damages that affect the structure have become more evident. These pathologies are concentrated in the adobe walls of the nave, manifesting through cracks. In the same way in the Inca wall settlements are presented and section loss due to erosion and previous fires and damage from leaks in the facades. This work focuses on the non-linear structural analysis of the San Juan Bautista church in Huaytara to evaluate its behavior under seismic actions. In the first part, the state of the art is presented, followed by a historical investigation into the construction phases of the church. The third part covers obtaining a 3D geometric model applying photogrammetric techniques. The following is a detailed description of the structural and material components during on-site field work. The fifth section deals with the mechanical characterization of the materials of the structure through laboratory tests in Lima and Barcelona. For the evaluation of structural behavior, a 3D finite element numerical model has been developed. The 3D model has been analyzed against gravitational and earthquake loads. For this, the non-linear static method (Pushover) has been applied, allowing the evaluation of the effects of the earthquake in the church, as well as the identification of the causes of existing structural damage and the most vulnerable elements

    The inspection by minor destructive testing in projects of adaptive reuse of historical masonry buildings and design of green rooftops in Barcelona

    No full text
    The mechanical characterisation of existing masonry in historical structures encounters several technical dif-ficulties due to the complexity and heterogeneity of this traditional material, as well as to the need for respectful inspec-tion activities able to preserve the cultural heritage value of the building. This paper presents and discusses different Minor Destructive Testing (MDT) techniques oriented at estimating, either in-situ or in the laboratory, the mechanical properties of masonry at the level of components, such as units, tiles, and mortar joints, and at the level of the composite material. The research addresses different issues related to the execution of laboratory tests on sampled historical mate-rials, such as selection of the size and shape of specimens, different types of treatments for the sample, testing protocols, and experimental setup. The complementary use of Finite Element Method (FEM) models represents a valuable activity to provide a good understanding of the experimental behaviour exhibited by the specimens, and especially concerning the execution of non-standard laboratory tests. The possibility of in-situ MDT is explored considering techniques based on different portable instruments, previously calibrated through ad-hoc experimental programs under controlled labora-tory conditions. The research is based on a high number of tests executed at the UPC within the context of several experimental programs linked to projects of adaptive reuse of existing masonry buildings and design of green rooftops in Barcelona.The authors gratefully acknowledge the financial support from the Ministry of Science, Innovation and Universities of the Spanish Government (MCIU), the State Agency of Research (AEI) as well as that of the ERDF (European Regional De-velopment Fund) through the project SEVERUS (Multilevel evaluation of seismic vulnerability and risk mitigation of masonry buildings in resilient historical urban centres, ref. Num. RTI2018-099589-B-I00). The first author gratefully acknowledges the owners of the historical buildings investigated, as well as people from the institutions and companies involved in the studies and projects mentioned in this work and in particular Sergio Carratalá from MataAlta. The second and third authors gratefully acknowledge the Spanish Ministry of Science, Innovation and Universities, and the AGAUR agency of the Generalitat de Catalunya, for the financial support of their predoctoral grants.Peer ReviewedObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats SosteniblesObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats Sostenibles::11.4 - Redoblar els esforços per a protegir i salvaguardar el patrimoni cultural i natural del mónObjectius de Desenvolupament Sostenible::13 - Acció per al ClimaObjectius de Desenvolupament Sostenible::13 - Acció per al Clima::13.2 - Incorporar mesures relatives al canvi climàtic en les polítiques, les estratègies i els plans nacionalsObjectius de Desenvolupament Sostenible::13 - Acció per al Clima::13.1 - Enfortir la resiliència i la capacitat d’adaptació als riscos relacionats amb el clima i els desastres naturals a tots els païsosPostprint (author's final draft
    corecore