92,374 research outputs found

    Schedulability analysis of timed CSP models using the PAT model checker

    Get PDF
    Timed CSP can be used to model and analyse real-time and concurrent behaviour of embedded control systems. Practical CSP implementations combine the CSP model of a real-time control system with prioritized scheduling to achieve efficient and orderly use of limited resources. Schedulability analysis of a timed CSP model of a system with respect to a scheduling scheme and a particular execution platform is important to ensure that the system design satisfies its timing requirements. In this paper, we propose a framework to analyse schedulability of CSP-based designs for non-preemptive fixed-priority multiprocessor scheduling. The framework is based on the PAT model checker and the analysis is done with dense-time model checking on timed CSP models. We also provide a schedulability analysis workflow to construct and analyse, using the proposed framework, a timed CSP model with scheduling from an initial untimed CSP model without scheduling. We demonstrate our schedulability analysis workflow on a case study of control software design for a mobile robot. The proposed approach provides non-pessimistic schedulability results

    The Complexity of Combinations of Qualitative Constraint Satisfaction Problems

    Full text link
    The CSP of a first-order theory TT is the problem of deciding for a given finite set SS of atomic formulas whether T∪ST \cup S is satisfiable. Let T1T_1 and T2T_2 be two theories with countably infinite models and disjoint signatures. Nelson and Oppen presented conditions that imply decidability (or polynomial-time decidability) of CSP(T1∪T2)\mathrm{CSP}(T_1 \cup T_2) under the assumption that CSP(T1)\mathrm{CSP}(T_1) and CSP(T2)\mathrm{CSP}(T_2) are decidable (or polynomial-time decidable). We show that for a large class of ω\omega-categorical theories T1,T2T_1, T_2 the Nelson-Oppen conditions are not only sufficient, but also necessary for polynomial-time tractability of CSP(T1∪T2)\mathrm{CSP}(T_1 \cup T_2) (unless P=NP)

    Commercial-off-the-shelf simulation package interoperability: Issues and futures

    Get PDF
    Commercial-Off-The-Shelf Simulation Packages (CSPs) are widely used in industry to simulate discrete-event models. Interoperability of CSPs requires the use of distributed simulation techniques. Literature presents us with many examples of achieving CSP interoperability using bespoke solutions. However, for the wider adoption of CSP-based distributed simulation it is essential that, first and foremost, a standard for CSP interoperability be created, and secondly, these standards are adhered to by the CSP vendors. This advanced tutorial is on an emerging standard relating to CSP interoperability. It gives an overview of this standard and presents case studies that implement some of the proposed standards. Furthermore, interoperability is discussed in relation to large and complex models developed using CSPs that require large amount of computing resources. It is hoped that this tutorial will inform the simulation community of the issues associated with CSP interoperability, the importance of these standards and its future
    • …
    corecore