511 research outputs found
Roper excitation in reactions
We calculate differential cross sections and the spin transfer coefficient
in the reaction for proton
bombarding energies from 1 to 10 GeV and invariant masses spanning
the region of the N(1440) Roper resonance. Two processes --
excitation in the -particle and Roper excitation in the proton -- are
included in an effective reaction model which was shown previously to reproduce
existing inclusive spectra. The present calculations demonstrate that these two
contributions can be clearly distinguished via , even under kinematic
conditions where cross sections alone exhibit no clear peak structure due to
the excitation of the Roper.Comment: 12 pages, 11 ps figures, Late
The combination of red palm oil and rooibos show anti-inflammatory effects in rats
BACKGROUND: Red palm oil (RPO) and rooibos have been shown to exhibit cardioprotective properties. RPO is rich in essential fatty acids and fat soluble antioxidants while rooibos contains polyphenolic compounds with a unique composition of flavonoids. They exert their biological effects in different cellular compartments. Therefore the combination of these two natural food compounds has the potential to enhance the spectrum of available dietary antioxidants in different cellular compartments, which could result in an enhanced protection against certain pathological conditions such as inflammation. METHODS: Male Wistar rats weighing 150-200 g were supplemented with RPO, rooibos or their combination for 28 days. The Langendorff system and the lipoposaccharide (LPS)-induced inflammatory model were used to establish if RPO and rooibos, when supplemented alone or in combination, will reverse the negative effects of LPS on cardiac function at baseline. The effect of dietary intervention was also investigated on modulation of pro-inflammatory and anti-inflammatory cytokines in plasma and myocardial tissue. RESULTS AND DISCUSSION: The LPS resulted in induction of systemic inflammation as evidenced by increased levels of IL-1beta in plasma of LPS-treated rats compared to their non-treated control counterparts. Dietary supplementation and LPS treatment did not have an effect on baseline cardiac functional parameters. However, the elevation of IL-1beta levels in plasma of LPS-induced rats consuming either RPO or rooibos alone were paralleled with increased levels of the anti-inflammatory cytokine, IL-10. The combination of rooibos and RPO was associated with enhanced endogenous production of myocardial IL-10 in LPS-induced rats. CONCLUSION: The results of this study indicate that RPO and rooibos when supplemented individually showed anti-inflammatory effect at systemic level while their combination exhibited an enhanced anti-inflammatory effect in the myocardial tissue. Therefore, the findings in the current study argue that the combination of these two natural food substances could be beneficial in clinically relevant conditions where inflammation plays a role
Pressure dependence of the spin gap in BaVS_3
We carried out magnetotransport experiments under hydrostatic pressure in
order to study the nature of the metal-insulator transition in BaVS.
Scaling relations for are established and the pressure dependence
of the spin gap is determined. Our new results, in conjunction with a
re-analysis of earlier specific heat and susceptibility data, demonstrate that
the transition is weakly second order. The nature of the phase diagram in the
---- space is discussed.Comment: 5 pages, 5 figures, submitted to PRB Rap. Co
Connective neck evolution and conductance steps in hot point contacts
Dynamic evolution of the connective neck in Al and Pb mechanically
controllable break junctions was studied during continuous approach of
electrodes at bias voltages V_b up to a few hundred mV. A high level of power
dissipation (10^-4 - 10^-3 W) and high current density (j > 10^10 A/cm^2) in
the constriction lead to overheating of the contact area, electromigration and
current-enhanced diffusion of atoms out of the "hot spot". At a low electrode
approach rate (10 - 50 pm/s) the transverse dimension of the neck and the
conductance of the junction depend on V_b and remain nearly constant over the
approach distance of 10 - 30 nm. For V_b > 300 mV the connective neck consists
of a few atoms only and the quantum nature of conductance manifests itself in
abrupt steps and reversible jumps between two or more levels. These features
are related to an ever changing number of individual conductance channels due
to the continuous rearrangement in atomic configuration of the neck, the
recurring motion of atoms between metastable states, the formation and breaking
of isolated one-atom contacts and the switching between energetically
preferable neck geometries.Comment: 21 pages 10 figure
Tree-level (pi, K)-amplitude and analyticity
We consider the tree-level amplitude, describing all 3 channels of the binary
(pi ,K)-reaction, as a meromorphic polynomially bounded function of 3 dependent
complex variables. Relying systematically on the Mittag-Leffler theorem, we
construct 3 convergent partial fraction expansions, each one being applied in
the corresponding domain. Noting, that the mutual intersections of those
domains are nonempty, we realize the analytical continuation. It is shown that
the necessary conditions to make such a continuation feasible, are the
following: 1) The only parameters completely determining the amplitude are the
on-shell couplings and masses; 2) These parameters are restricted by a certain
(infinite) system of bootstrap equations; 3) The full cross-symmetric amplitude
takes the typically dual form, the Pomeron contribution being taken into
account; 4)This latter contribution corresponds to a nonresonant background,
which, in turn, is expressed in terms of cross-channel resonances parameters.
It is demonstrated also, that the Chiral Symmetry provides a unique scale for
the mentioned parameters, the resonance saturation effect appearing as a direct
consequence of the above results
Evidence of Majorana fermions in an Al - InAs nanowire topological superconductor
Majorana fermions are the only fermionic particles that are expected to be
their own antiparticles. While elementary particles of the Majorana type were
not identified yet, quasi-particles with Majorana like properties, born from
interacting electrons in the solid, were predicted to exist. Here, we present
thorough experimental studies, backed by numerical simulations, of a system
composed of an aluminum superconductor in proximity to an indium arsenide
nanowire, with the latter possessing strong spin-orbit coupling. An induced 1d
topological superconductor - supporting Majorana fermions at both ends - is
expected to form. We concentrate on the characteristics of a distinct zero bias
conductance peak (ZBP), and its splitting in energy, both appearing only with a
small magnetic field applied along the wire. The ZBP was found to be robustly
tied to the Fermi energy over a wide range of system parameters. While not
providing a definite proof of a Majorana state, the presented data and the
simulations support strongly its existence
Subcellular distribution of glutathione and cysteine in cyanobacteria
Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine, glutamate, and glycine. Cysteine is the limiting factor for glutathione biosynthesis which can be especially crucial for cyanobacteria, which rely on both the sufficient sulfur supply from the growth media and on the protection of glutathione against ROS that are produced during photosynthesis. In this study, we report a method that allows detection and visualization of the subcellular distribution of glutathione in Synechocystis sp. This method is based on immunogold cytochemistry with glutathione and cysteine antisera and computer-supported transmission electron microscopy. Labeling of glutathione and cysteine was restricted to the cytosol and interthylakoidal spaces. Glutathione and cysteine could not be detected in carboxysomes, cyanophycin granules, cell walls, intrathylakoidal spaces, periplasm, and vacuoles. The accuracy of the glutathione and cysteine labeling is supported by two observations. First, preadsorption of the antiglutathione and anticysteine antisera with glutathione and cysteine, respectively, reduced the density of the gold particles to background levels. Second, labeling of glutathione and cysteine was strongly decreased by 98.5% and 100%, respectively, in Synechocystis sp. cells grown on media without sulfur. This study indicates a strong similarity of the subcellular distribution of glutathione and cysteine in cyanobacteria and plastids of plants and provides a deeper insight into glutathione metabolism in bacteria
Functional Assessment of EnvZ/OmpR Two-Component System in Shewanella oneidensis
EnvZ and OmpR constitute the bacterial two-component signal transduction system known to mediate osmotic stress response in a number of Gram-negative bacteria. In an effort to understand the mechanism through which Shewanella oneidensis senses and responds to environmental osmolarity changes, structure of the ompR-envZ operon was determined with Northern blotting assay and roles of the EnvZ/OmpR two-component system in response to various stresses were investigated with mutational analysis, quantitative reverse transcriptase PCR (qRT-PCR), and phenotype microarrays. Results from the mutational analysis and qRT-PCR suggested that the EnvZ/OmpR system contributed to osmotic stress response of S. oneidensis and very likely engaged a similar strategy employed by E. coli, which involved reciprocal regulation of two major porin coding genes. Additionally, the ompR-envZ system was also found related to cell motility. We further showed that the ompR-envZ dependent regulation of porin genes and motility resided almost completely on ompR and only partially on envZ, indicating additional mechanisms for OmpR phosphorylation. In contrast to E. coli lacking ompR-envZ, however, growth of S. oneidensis did not show a significant dependence on ompR-envZ even under osmotic stress. Further analysis with phenotype microarrays revealed that the S. oneidensis strains lacking a complete ompR-envZ system displayed hypersensitivities to a number of agents, especially in alkaline environment. Taken together, our results suggest that the function of the ompR-envZ system in S. oneidensis, although still connected with osmoregulation, has diverged considerably from that of E. coli. Additional mechanism must exist to support growth of S. oneidensis under osmotic stress
Unauthorized Horizontal Spread in the Laboratory Environment: The Tactics of Lula, a Temperate Lambdoid Bacteriophage of Escherichia coli
We investigated the characteristics of a lambdoid prophage, nicknamed Lula, contaminating E. coli strains from several sources, that allowed it to spread horizontally in the laboratory environment. We found that new Lula infections are inconspicuous; at the same time, Lula lysogens carry unusually high titers of the phage in their cultures, making them extremely infectious. In addition, Lula prophage interferes with P1 phage development and induces its own lytic development in response to P1 infection, turning P1 transduction into an efficient vehicle of Lula spread. Thus, using Lula prophage as a model, we reveal the following principles of survival and reproduction in the laboratory environment: 1) stealth (via laboratory material commensality), 2) stability (via resistance to specific protocols), 3) infectivity (via covert yet aggressive productivity and laboratory protocol hitchhiking). Lula, which turned out to be identical to bacteriophage phi80, also provides an insight into a surprising persistence of T1-like contamination in BAC libraries
Trends of the Major Porin Gene (ompF) Evolution: Insight from the Genus Yersinia
OmpF is one of the major general porins of Enterobacteriaceae that belongs to the first line of bacterial defense and interactions with the biotic as well as abiotic environments. Porins are surface exposed and their structures strongly reflect the history of multiple interactions with the environmental challenges. Unfortunately, little is known on diversity of porin genes of Enterobacteriaceae and the genus Yersinia especially. We analyzed the sequences of the ompF gene from 73 Yersinia strains covering 14 known species. The phylogenetic analysis placed most of the Yersinia strains in the same line assigned by 16S rDNA-gyrB tree. Very high congruence in the tree topologies was observed for Y. enterocolitica, Y. kristensenii, Y. ruckeri, indicating that intragenic recombination in these species had no effect on the ompF gene. A significant level of intra- and interspecies recombination was found for Y. aleksiciae, Y. intermedia and Y. mollaretii. Our analysis shows that the ompF gene of Yersinia has evolved with nonrandom mutational rate under purifying selection. However, several surface loops in the OmpF porin contain positively selected sites, which very likely reflect adaptive diversification Yersinia to their ecological niches. To our knowledge, this is a first investigation of diversity of the porin gene covering the whole genus of the family Enterobacteriaceae. This study demonstrates that recombination and positive selection both contribute to evolution of ompF, but the relative contribution of these evolutionary forces are different among Yersinia species
- β¦