209 research outputs found

    Treatment of chronic plantar fasciopathy with extracorporeal shock waves (review)

    Get PDF
    There is an increasing interest by doctors and patients in extracorporeal shock wave therapy (ESWT) for chronic plantar fasciopathy (PF), particularly in second generation radial extracorporeal shock wave therapy (RSWT). The present review aims at serving this interest by providing a comprehensive overview on physical and medical definitions of shock waves and a detailed assessment of the quality and significance of the randomized clinical trials published on ESWT and RSWT as it is used to treat chronic PF. Both ESWT and RSWT are safe, effective, and technically easy treatments for chronic PF. The main advantages of RSWT over ESWT are the lack of need for any anesthesia during the treatment and the demonstrated long-term treatment success (demonstrated at both 6 and 12 months after the first treatment using RSWT, compared to follow-up intervals of no more than 12 weeks after the first treatment using ESWT). In recent years, a greater understanding of the clinical outcomes in ESWT and RSWT for chronic PF has arisen in relationship not only in the design of studies, but also in procedure, energy level, and shock wave propagation. Either procedure should be considered for patients 18 years of age or older with chronic PF prior to surgical intervention

    Radial Shock Wave Devices Generate Cavitation

    Get PDF
    Background Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues. Methods and Findings We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast;Electro Medical Systems, Nyon, Switzerland;D-Actor 200;Storz Medical, Tagerwillen, Switzerland) and a vibrating massage device (Vibracare;G5/General Physiotherapy, Inc.,Earth City, MO, USA). To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans) worms. Results FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device. Conclusions The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices

    Radial extracorporeal shock wave therapy is efficient and safe in the treatment of fracture nonunions of superficial bones: a retrospective case series

    Get PDF
    Background: A substantial body of evidence supports the use of focused extracorporeal shock wave therapy (fESWT) in the non-invasive treatment of fracture nonunions. On the other hand, virtually no studies exist on the use of radial extracorporeal shock wave therapy (rESWT) for this indication. Methods: We retrospectively analyzed 22 patients treated with rESWT for fracture nonunions of superficial bones that failed to heal despite initial surgical fixation in most cases. Radial extracorporeal shock wave therapy was applied without anesthesia in three rESWT sessions on average, with one rESWT session per week and 3000 radial extracorporeal shock waves at an energy flux density of 0.18 mJ/mm(2) per session. Treatment success was monitored with radiographs and clinical examinations. Results: Six months after rESWT radiographic union was confirmed in 16 out of 22 patients (73%), which is similar to the success rate achieved in comparable studies using fESWT. There were no side effects. The tibia was the most common treatment site (10/22) and 70% of tibia nonunions healed within 6 months after rESWT. Overall, successfully treated patients showed a mean time interval of 8.8 +/- 0.8 (mean +/- standard error of the mean) months between initial fracture and commencement of rESWT whereas in unsuccessfully treated patients the mean interval was 26.0 +/- 10.1 months (p < 0.05). In unsuccessful tibia cases, the mean interval was 43.3 +/- 13.9 months. Conclusions: Radial extracorporeal shock wave therapy appears to be an effective and safe alternative in the management of fracture nonunions of superficial bones if diagnosed early and no fESWT device is available. The promising preliminary results of the present case series should encourage the implementation of randomized controlled trials for the early use of rESWT in fracture nonunions

    (Z)-3-(4-Fluoro­phen­yl)-1-[4-(methyl­sulfon­yl)phen­yl]-2-tosyl­prop-2-en-1-one

    Get PDF
    In the title compound, C23H19FO5S2, two of the phenyl ring C atoms and a sulfonyl O atom of the phenyl(methylsulfonyl) group are disordered over two positions with occupancies 0.522 (17):0.478 (17). The methyl­phenyl and fluoro­phenyl rings are essentially planar, with maximum deviations of 0.0059 (8) and 0.0047 (9) Å, respectively. The crystal packing is stabilized by C—H⋯F inter­actions

    5,7-Bis(1-benzothio­phen-2-yl)-2,3-dihydro­thieno[3,4-b][1,4]dioxine

    Get PDF
    In the title compound, C22H14O2S3, the dioxane ring is disordered over two sites [site occupancies = 0.623 (3) and 0.377 (3)]; both components adopt half-chair conformations. The two benzothio­phene ring systems are asymmetrically twisted away from the attached thio­phene ring [dihedral angles = 20.57 (3) and 6.70 (3)°] and are oriented at an angle of 26.83 (3)°. No significant hydrogen bonding or π–π inter­actions are observed in the crystal structure

    Ex vivo Manufactured Neutrophils for Treatment of Neutropenia—A Process Economic Evaluation

    Get PDF
    Neutropenia is a common side-effect of acute myeloid leukemia (AML) chemotherapy characterized by a critical drop in neutrophil blood concentration. Neutropenic patients are prone to infections, experience poorer clinical outcomes, and require expensive medical care. Although transfusions of donor neutrophils are a logical solution to neutropenia, this approach has not gained clinical traction, primarily due to challenges associated with obtaining sufficiently large numbers of neutrophils from donors whilst logistically managing their extremely short shelf-life. A protocol has been developed that produces clinical-scale quantities of neutrophils from hematopoietic stem and progenitor cells (HSPC) in 10 L single-use bioreactors (1). This strategy could be used to mass produce neutrophils and generate sufficient cell numbers to allow decisive clinical trials of neutrophil transfusion. We present a bioprocess model for neutrophil production at relevant clinical-scale. We evaluated two production scenarios, and the impact on cost of goods (COG) of multiple model parameters including cell yield, materials costs, and process duration. The most significant contributors to cost were consumables and raw materials, including the cost of procuring HSPC-containing umbilical cord blood. The model indicates that the most cost-efficient culture volume (batch size) is ~100 L in a single bioreactor. This study serves as a framework for decision-making and optimization strategies when contemplating the production of clinical quantities of cells for allogeneic therapy

    Critical evaluation of measured rotational-vibrational transitions of four sulphur isotopologues of (SO2)-O-16

    Get PDF
    A critical evaluation and validation of the complete set of previously published experimental rotational–vibrational line positions is reported for the four stable sulphur isotopologues of the semirigid SO2 molecule – i.e., 32S16O2, 33S16O2, 34S16O2, and 36S16O2. The experimentally measured, assigned, and labeled transitions are collated from 43 sources. The 32S16O2, 33S16O2, 34S16O2, and 36S16O2 datasets contain 40,269, 15,628, 31,080, and 31 lines, respectively. Of the datasets collated, only the extremely limited 36S16O2 dataset is not subjected to a detailed analysis. As part of a detailed analysis of the experimental spectroscopic networks corresponding to the ground electronic states of the 32S16O2, 33S16O2, and 34S16O2 isotopologues, the MARVEL (Measured Active Rotational–Vibrational Energy Levels) procedure is used to determine the rovibrational energy levels. The rovibrational levels and their vibrational parent and asymmetric-top quantum numbers are compared to ones obtained from accurate variational nuclear-motion computations as well as to results of carefully designed effective Hamiltonian models. The rovibrational energy levels of the three isotopologues having the same labels are also compared against each other to ensure self-consistency. This careful, multifaceted analysis gives rise to 15,130, 5852, and 10,893 validated rovibrational energy levels, with a typical accuracy of a few 0.0001 cm−1, for 32S16O2, 33S16O2, and 34S16O2, respectively. The extensive list of validated experimental lines and empirical (MARVEL) energy levels of the S16O2 isotopologues studied are deposited in the Supplementary Material of this article, as well as in the distributed information system ReSpecTh (http://respecth.hu)

    PERT: A Method for Expression Deconvolution of Human Blood Samples from Varied Microenvironmental and Developmental Conditions

    Get PDF
    The cellular composition of heterogeneous samples can be predicted using an expression deconvolution algorithm to decompose their gene expression profiles based on pre-defined, reference gene expression profiles of the constituent populations in these samples. However, the expression profiles of the actual constituent populations are often perturbed from those of the reference profiles due to gene expression changes in cells associated with microenvironmental or developmental effects. Existing deconvolution algorithms do not account for these changes and give incorrect results when benchmarked against those measured by well-established flow cytometry, even after batch correction was applied. We introduce PERT, a new probabilistic expression deconvolution method that detects and accounts for a shared, multiplicative perturbation in the reference profiles when performing expression deconvolution. We applied PERT and three other state-of-the-art expression deconvolution methods to predict cell frequencies within heterogeneous human blood samples that were collected under several conditions (uncultured mono-nucleated and lineage-depleted cells, and culture-derived lineage-depleted cells). Only PERT's predicted proportions of the constituent populations matched those assigned by flow cytometry. Genes associated with cell cycle processes were highly enriched among those with the largest predicted expression changes between the cultured and uncultured conditions. We anticipate that PERT will be widely applicable to expression deconvolution strategies that use profiles from reference populations that vary from the corresponding constituent populations in cellular state but not cellular phenotypic identity

    Continued improvement of cardiovascular mortality in Hungary - impact of increased cardio-metabolic prescriptions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the last 35 years the poor ranking of Hungary on the list of life expectancy at birth among European countries, has not changed. In 1970 our lag behind the leading European countries was the smallest. The gap was growing between 1970 and 1993 but from 1994 onwards the life expectancy at birth in Hungary has increased continuously and somewhat faster than in other European countries. The aim of this study was to analyze the association between decreasing cardiovascular mortality rates, as a main cause of death and the increase in cardio-metabolic prescriptions and possible changes in lifestyle behavior.</p> <p>Methods</p> <p>Analyses were conducted on national data concerning cardiovascular mortality and the number of cardio-metabolic drug prescription per capita. The association between yearly rates of cardiovascular events and changes in antihypertensive, antilipidemic and antidiabetic prescription rates was analyzed. The changes in other cardiovascular risk factors, like lifestyle were also considered.</p> <p>Results</p> <p>We observed a remarkable decline of mortality due to stroke and acute myocardial infarction (AMI). The fall was significantly associated with all prescription rates. The proportion of each treatment type responsible for suppression of specific mortality rates is different. All treatment types comparably improved stroke mortality, while antilipidemic therapy improved AMI outcome.</p> <p>Conclusions</p> <p>These results emphasize the importance of a comprehensive strategy that maximizes the population coverage of effective treatments. Hungary appears to be at the beginning of the fourth stage of epidemiologic transition, i.e. it has entered the stage of delayed chronic noninfectious diseases.</p
    • …
    corecore