185 research outputs found

    Tangling clustering of inertial particles in stably stratified turbulence

    Full text link
    We have predicted theoretically and detected in laboratory experiments a new type of particle clustering (tangling clustering of inertial particles) in a stably stratified turbulence with imposed mean vertical temperature gradient. In this stratified turbulence a spatial distribution of the mean particle number density is nonuniform due to the phenomenon of turbulent thermal diffusion, that results in formation of a gradient of the mean particle number density, \nabla N, and generation of fluctuations of the particle number density by tangling of the gradient, \nabla N, by velocity fluctuations. The mean temperature gradient, \nabla T, produces the temperature fluctuations by tangling of the gradient, \nabla T, by velocity fluctuations. These fluctuations increase the rate of formation of the particle clusters in small scales. In the laboratory stratified turbulence this tangling clustering is much more effective than a pure inertial clustering that has been observed in isothermal turbulence. In particular, in our experiments in oscillating grid isothermal turbulence in air without imposed mean temperature gradient, the inertial clustering is very weak for solid particles with the diameter 10 microns and Reynolds numbers Re =250. Our theoretical predictions are in a good agreement with the obtained experimental results.Comment: 16 pages, 4 figures, REVTEX4, revised versio

    1,3-Butadiene: linking metabolism, dosimetry, and mutation induction.

    Get PDF
    There is increasing concern for the potential adverse health effects of human exposures to chemical mixtures. To better understand the complex interactions of chemicals within a mixture, it is essential to develop a research strategy which provides the basis for extrapolating data from single chemicals to their behavior within the chemical mixture. 1,3-Butadiene (BD) represents an interesting case study in which new data are emerging that are critical for understanding interspecies differences in carcinogenic/genotoxic response to BD. Knowledge regarding mechanisms of BD-induced carcinogenicity provides the basis for assessing the potential effects of mixtures containing BD. BD is a multisite carcinogen in B6C3F1 mice and Sprague-Dawley rats. Mice exhibit high sensitivity relative to the rat to BD-induced tumorigenesis. Since it is likely that BD requires metabolic activation to mutagenic reactive epoxides that ultimately play a role in carcinogenicity of the chemical, a quantitative understanding of the balance of activation and inactivation is essential for improving our understanding and assessment of human risk following exposure to BD and chemical mixtures containing BD. Transgenic mice exposed to 625 ppm BD for 6 hr/day for 5 days exhibited significant mutagenicity in the lung, a target organ for the carcinogenic effect of BD in mice. In vitro studies designed to assess interspecies differences in the activation of BD and inactivation of BD epoxides reveal that significant differences exist among mice, rats, and humans. In general, the overall activation/detoxication ratio for BD metabolism was approximately 10-fold higher in mice compared to rats or humans.(ABSTRACT TRUNCATED AT 250 WORDS

    Dynamics and statistics of heavy particles in turbulent flows

    Get PDF
    We present the results of Direct Numerical Simulations (DNS) of turbulent flows seeded with millions of passive inertial particles. The maximum Taylor's Reynolds number is around 200. We consider particles much heavier than the carrier flow in the limit when the Stokes drag force dominates their dynamical evolution. We discuss both the transient and the stationary regimes. In the transient regime, we study the growt of inhomogeneities in the particle spatial distribution driven by the preferential concentration out of intense vortex filaments. In the stationary regime, we study the acceleration fluctuations as a function of the Stokes number in the range [0.16:3.3]. We also compare our results with those of pure fluid tracers (St=0) and we find a critical behavior of inertia for small Stokes values. Starting from the pure monodisperse statistics we also characterize polydisperse suspensions with a given mean Stokes.Comment: 13 pages, 10 figures, 2 table

    Statistical conservation laws in turbulent transport

    Full text link
    We address the statistical theory of fields that are transported by a turbulent velocity field, both in forced and in unforced (decaying) experiments. We propose that with very few provisos on the transporting velocity field, correlation functions of the transported field in the forced case are dominated by statistically preserved structures. In decaying experiments (without forcing the transported fields) we identify infinitely many statistical constants of the motion, which are obtained by projecting the decaying correlation functions on the statistically preserved functions. We exemplify these ideas and provide numerical evidence using a simple model of turbulent transport. This example is chosen for its lack of Lagrangian structure, to stress the generality of the ideas

    Detection of turbulent thermal diffusion of particles in numerical simulations

    Full text link
    The phenomenon of turbulent thermal diffusion in temperature-stratified turbulence causing a non-diffusive turbulent flux of inertial and non-inertial particles in the direction of the turbulent heat flux is found using direct numerical simulations (DNS). In simulations with and without gravity, this phenomenon is found to cause a peak in the particle number density around the minimum of the mean fluid temperature for Stokes numbers less than 1, where the Stokes number is the ratio of particle Stokes time to turbulent Kolmogorov time at the viscous scale. Turbulent thermal diffusion causes the formation of large-scale inhomogeneities in the spatial distribution of inertial particles. The strength of this effect is maximum for Stokes numbers around unity, and decreases again for larger values. The dynamics of inertial particles is studied using Lagrangian modelling in forced temperature-stratified turbulence, whereas non-inertial particles and the fluid are described using DNS in an Eulerian framework.Comment: 9 pages, 6 figures, REVTEX4-1, extended pape

    Perturbation theory for large Stokes number particles in random velocity fields

    Full text link
    We derive a perturbative approach to study, in the large inertia limit, the dynamics of solid particles in a smooth, incompressible and finite-time correlated random velocity field. We carry on an expansion in powers of the inverse square root of the Stokes number, defined as the ratio of the relaxation time for the particle velocities and the correlation time of the velocity field. We describe in this limit the residual concentration fluctuations of the particle suspension, and determine the contribution to the collision statistics produced by clustering. For both concentration fluctuations and collision velocities, we analyze the differences with the compressible one-dimensional case.Comment: Latex, 12 pages, 2 eps figures include

    PKQuest: a general physiologically based pharmacokinetic model. Introduction and application to propranolol

    Get PDF
    BACKGROUND: A "physiologically based pharmacokinetic" (PBPK) approach uses a realistic model of the animal to describe the pharmacokinetics. Previous PBPKs have been designed for specific solutes, required specification of a large number of parameters and have not been designed for general use. METHODS: This new PBPK program (PKQuest) includes a "Standardhuman" and "Standardrat" data set so that the user input is minimized. It has a simple user interface, graphical output and many new features: 1) An option that uses the measured plasma concentrations to solve for the time course of the gastrointestinal, intramuscular, intraperotineal or skin absorption and systemic availability of a drug – for a general non-linear system. 2) Capillary permeability limitation defined in terms of the permeability-surface area products. 4) Saturable plasma and tissue protein binding. 5) A lung model that includes perfusion-ventilation mismatch. 6) A general optimization routine using either a global (simulated annealing) or local (Powell) minimization applicable to all model parameters. RESULTS: PKQuest was applied to measurements of human propranolol pharmacokinetics and intestinal absorption. A meal has two effects: 1) increases portal blood flow by 50%; and 2) decreases liver metabolism by 20%. There is a significant delay in the oval propranolol absorption in fasting subjects that is absent in fed subjects. The oral absorption of the long acting form of propranolol continues for a period of more than 24 hours. CONCLUSIONS: PKQuest provides a new general purpose, easy to use, freely distributed and physiologically rigorous PBPK software routine
    • …
    corecore